W2

S

N\

Urrg Aee Bus gatestiet

ufenrar
JAGAT GURU NANAK DEV
PUNJAB STATE OPEN UNIVERSITY, PATIALA

(Established by Act No. 19 of 2019 of the Legislature of State of Punjab)

The Motto of the University
(SEWA)

SKILL ENHANCEMENT EMPLOYABILITY WISDOM
ACCESSIBILITY

<
-l
<
<
o
:
o
a
Z
9]
P
T
-
=
%
l_
T
O
ia
&
O
O

- R

M.SC. (COMPUTER SCIENCE)
SEMESTER-IV
COURSE: MACHINE LEARNING

COURSE CODE: MSCS-4-01T

ADDRESS: C/28, THE LOWER MALL, PATIALA-147001
WEBSITE: www.psou.ac.in

SELF-INSTRUCTIONAL

http://www.psou.ac.in/

MSCS-4-01T: Machine Learning

Total Marks. 100
Externa Marks:. 70
Internal Marks: 30
Credits. 4

Pass Percentage: 40%

INSTRUCTIONS FOR THE PAPER SETTER/EXAMINER

1.
2.

The syllabus prescribed should be strictly adhered to.

The question paper will consist of three sections: A, B, and C. Sections A and B will have
four questions from the respective sections of the syllabus and will carry 10 marks each.
The candidates will attempt two questions from each section.

Section C will have fifteen short answer questions covering the entire syllabus. Each
guestion will carry 3 marks. Candidates will attempt any ten questions from this section.
The examiner shall give a clear instruction to the candidates to attempt questions only at
one place and only once. Second or subsequent attempts, unless the earlier ones have been
crossed out, shall not be evaluated.

The duration of each paper will be three hours.

INSTRUCTIONS FOR THE CANDIDATES

Candidates are required to attempt any two questions each from the sections A and B of the
guestion paper and any ten short questions from Section C. They have to attempt questions only
at one place and only once. Second or subsequent attempts, unless the earlier ones have been
crossed out, shall not be evaluated.

Course: Machine Learning

Course Code: MSCS-4-01T

Course Outcomes (COs)
After the completion of this course, the students will be able to:

CO1 | Understand the fundamental concepts and principles of machine learning.

CO2 | Apply and evaluate various supervised learning algorithms

CO3 | Explore and apply unsupervised learning techniques

CO4 | Apply machine learning techniques to solve real-world problems

CO5 | Evauate the strengths and limitations of different machine learning approaches

Detailed Contents:

Module | Module Name | Module Contents
Section-A
Modulel Introduction to Machine Introduction to ML, Applications of Machine
Learning learning, machine learning as a future; Data Pre-

processing: Importing the libraries, Importing the
dataset, taking care of missing data, encoding
categorical data, Splitting the dataset into training
set and test set, Feature scaling.

Simple linear regression, Multiple linear
regression, Logistic Regression, K-Nearest
Neighbors, Support vector machine, Decision tree
classification, Random forest classification, k-
means clustering

Modulell Introduction to Artificial Introduction to ANNs, Biologica Neura
Neural Networks Networks; Usefulness and Applications of ANNS;
Architectures of ANNs: Single layer, Multilayer,
Competitive layer; Learning: Supervised and
Unsupervised; Activation functions; Linear and
Non-linear Separability
Section-B

Modulelll | Supervised Models Hebb Net: introduction, algorithm, application
for AND problem;
Perceptron: architecture, algorithm, application
for OR Problem;
ADALINE: architecture, agorithm, application
for XOR problem;
MADALINE: architecture, algorithm,
application for XOR problem;
Back propagation Neural Network:
architecture, parameters, algorithm, applications,
different issues regarding convergence

ModulelV | Unsupervised Models Kohonen Self —Organizing Maps:. architecture,
algorithm, application,
Adaptive Resonance Theory: introduction,
basic architecture, basic operation, ART1 and
ART

Books

1. Andreas C. Miiller, “Introduction to Machine Learning with Python: A Guide for Data

Scientists”, Sarah Guido, 2016
2. E. Alpaydin, “Introduction to Machine Learning”, 3" Edition, PHI Learning, 2015
3. K. P. Murphy, “Machine Learning:A Probabilistic Perspective”, MIT Press, 2012
4. https.//www.udemy.com/course/machinel earning

https://www.udemy.com/course/machinelearning

MACHINE LEARNING
UNIT I: INTRODUCTION TO MACHINE LEARNING

STRUCTURE

1.0 Objectives

1.1 Introduction

1.2 What is Machine Learning?

1.3 Categories of Machine learning
1.4 Applicationsof Machinelearning
1.5 Machinelearning asa future
1.6 Data pre-processing

1.7 Why data pre-processing

1.8 Stepsin data-processing

1.9 Self-check questions

1.10 Summary

1.11Unit end questions

1.0 OBEJCTIVES
» Learn the fundamentals of machine learning and its categorization.
» Understand the applications where machine learning is used.
> Get deep insights about how to do data pre-processing on the machine learning
datasets.

11 INTRODUCTION

This module targets understanding the concept of machine learning along with its
categorization. This module also discusses applications of machine learning, its future, and a
detailed discussion on data pre-processing steps along with python program examples. This
module targets graduate students who want to learn machine learning using python
programming. Machine learning is a sub-field of artificial intelligence and is currently used
for sentiment analysis, video surveillance, diseases detection, and recognition, etc. The main
target of this module is to inculcate the basics of machine learning to the learners so that they
can do data pre-processing on the datasets before moving with higher steps of machine
earning.

12 WHAT ISMACHINE LEARNING?

It is a sub-field of artificial intelligence (Al) that encompasses mathematical computational
models to predict the outcomes by understanding data. Machine learning algorithms are
firstly trained on the historical data such that they can predict the output values for the newly
observed data. The question that arises is that machine learning is similar to human brain
learning. As the name suggests, machine learning makes computer learning similar to humans
based on their ,,ability to learn®. Machine learning is popularly for crop diseases prediction,
spam filtering, business process automation, and emotion recognition, etc.

1.3 CATEGORIES OF MACHINE LEARNING

How does a machine learning algorithm learn for accurately predicting the new outcomes
help in the categorization of machine learning algorithms? These are categorized into four
types and these are mentioned below:

a) Supervised learning

b) Unsupervised learning
c) Semi-supervised learning
d) Reinforcement learning

a) Supervised Learning

In this learning, the objective is to build a general rule that helps in making a relationship
between the inputs given to the algorithm with the outputs obtained after executing the
algorithm. The agorithms are trained with input and output data till a certain level of
accuracy is achieved. Now, testing is done on new data to check its predicting accuracy. You
can say that both input and output are specified, the algorithm targets to learn by mapping
input to the output. Supervised learning helps in performing the tasks like classification and
regression.

Classification: It helps in predicting the class label for a given input data. For example, the
algorithm is trained with many images along with its corresponding class labels. The testing
accuracy will be high when you provide new images to the algorithm and it can classify them
correctly according to their class |abels. Here, the class |abels are discrete categories.

Regression: The class labels in regression are continuous instead of discrete categories.
Example: stock market prediction, here the algorithms are trained based on historical data and
in future predict the new stock price. In input, you have one or more predictor variables that
help in predicting continuous outcomes.

b) Unsupervised Learning

This learning figures out the hidden patterns from the unlabeled data The training is
performed on the unlabeled data and the agorithm makes a meaningful connection by
observing hidden patterns and when any unlabeled data is inputted to the algorithm while
testing, the algorithm uses the knowledge of training while predicting the outcome. It
performs many tasks like clustering, high dimension visualization, anomaly detection, and
dimensionality reduction [1].

Clustering: By checking the similarity, spilt the similar datainto clusters.

High Dimension Visualization: This helps in visualizing the data that is having high
dimensions.

Anomaly Detection: Figure out the unusual data pointsin the data.

Dimensionality Reduction: Minimise the number of variables in the data such that it does not
affect the model training and testing.

c) Semi-supervised Learning

In this type of learning, you have a large amount of data and some of the data is labelled
unlike unsupervised learning where data is unlabelled and in supervised learning, data is
labelled. The algorithm®s performance enhances when the whole data is labelled but data
labelling is an expensive and time-consuming process. This semi-supervised learning lies
between supervised and unsupervised learning. Some of the tasks that are performed by this
type of learning are machine trandlation, fraud detection, etc [2].

Machine tranglation: Transate alanguage when afull dictionary of wordsis not available.
Fraud detection: Finding out the frauds when you have only some positive examples
d) Reinforcement learning:

An algorithm works for a specific goal with a certain set of rules for achieving the specific
goal. There are rewards and punishments while reaching your specific goal. Positive rewards
are given when your programmed algorithm is reaching close to your goal and punishments
are given when it is going farther from your goal. This learning can perform certain tasks like
driverless cars, video gameplay, etc [1].

Driverless cars: This algorithm helps the car by learning from the dynamic environment and
make them self-dependent.

Video gameplay: Bots are being trained using reinforcement learning to play a vast number
of video games.

14 APPLICATIONS OF MACHINE LEARNING

In the current era, machine learning is the buzz word and it is used for daily routine tasks as
well as for complex tasks. Some of the machine learning applications [3] are mentioned
below:

a) Product Recommendations:

Big Giant e-commerce companies use product recommendations for their e-commerce
website customers. They use machine learning and Al algorithms on the backend for product
recommendations by tracking your past purchases and searching patterns.

b) Image Recognition:

Thisis one of the important applications of machine learning. Detect an object from a digital
image is the image recognition aspect. Object detection like face recognition, eyes
recognition, patterns recognition from digital images. This technique is further used for
emotion recognition and fraud analysis etc.

c) Sentiment Anayss:

Thisis one of the real-time applications that helps in knowing the emotion or opinion state of
mind of speakers or writers. A sentiment analyzer will analyze your written text, face, or
voice for predicting your state of mind whether you are happy, sad, angry, nervous, €tc.
These analyses are used for decision-making applications and review-based websites.

d) Prediction of potential heart failure

Machine learning algorithms help in finding out the patterns in the patient™s cardiovascular
history, this helps the doctors to do diagnoses without working on the patient™s health
records. These algorithms minimize the chances of the wrong diagnosis along with saves time
for analyzing available history information.

e) Video Surveillance

These are the most progressive applications of machine learning and Al. It provides better
prospects to get useful information from automated surveillance devices rather than any other
source. Machines can look for the objects by 24*7 as compared to human brains. Video
surveillance is used for traffic monitoring and management, parking lots, theft prevention,
hospital operation monitoring, abnormal event detections, etc.

f) Chatbots

Nowadays, chatbots are used to answer customer queries in different applications like
banking, purchasing, stock market, etc. These applications have the option ‘“chat with us”.
Chatbots use the concept of machine learning (decision tree mostly) while resolving different

4

customer queries. Machine learning concept helps the machines to learn quickly, fast reply
and satisfy customers.

g) Virtua Personal Assistants (VPAS)

VPASs help to discover information and set instructions when you ask them something over
voice. Discover information like “what are the flights from Mumbai to Delhi” and set
instruction commands like “set alarm for 5“clock in the morning. VPAs can handle your
queries and instructions as they are trained and tested using machine learning concepts. Some
of the popular VPAs are Alexa, Google, Siri, etc. They are also integrated with different
platforms like Smart Speakers (Google Home, Amazon Echo), Mobile Apps (Google Allo),
and Smartphones (Samsung Bixby) [4], etc.

h) Spam and Malware Filtering

Spam filtering is an approach that is used by email clients. Machine learning is backing up
the spam filters for regular and continuous updating. When rules are made to do the spam
filtering, they sometimes fail to do as spammers adopt the latest tricks to befool them. But,
when machine learning-backed spam filters like Decision tree filters, multi-layer perceptron,
they are toughed to be fooled by spammers. Lakhs of malware are detected daily and machine
learning agorithms help in detecting and figuring out the coding patterns in this malware and
protect the system from further damage.

i) Results Refinement for Search Engine

Y ahoo, Bing, Google, and other search engines use machine learning algorithms in the
backyard to improve the search results of your search string. One of the ways for learning for
the search engine is that when you put a search string in the search engine and the results
which came out after executing the string shows that you open the top results of the first
page, the search engine assumes that results are according to your query. If you go to the 3rd
or 4th page of search results, the search engine assumes that results are not according to the
search string. Thisis one of the ways to improve the search results.
j) Email Spam and Malware filtering

You can see when you receive a mail, it is filtered automatically as spam, normal or
important. The important emails are received in the inbox with important symbols whereas
spam emails are in the spam box. This whole process is done with the help of machine
learning. Gmail uses some of the spam filters and these are:

e Rule-basedfilters

o Content filters

e Permission filters

e Header filters
The machine learning a gorithms that are used for malware detection and email spam filtering
are Decision Tree, Multi-layer perceptron, etc.

15 MACHINE LEARNING ASA FUTURE
The computer algorithms that are based on machine learning learn reflexively from the
dynamic environment through their experiences and many trials. These agorithms are
capable of predicting output without human intervention and with utmost precision.
Nowadays as well as in the future, machine learning will remain a buzzword. At present,
these types of algorithms are used in every common domain like digital marketing, banking,
health care, insurance sector, stock market, etc. The development of machine learning
algorithms will impact and change the lives of the common man that was impossible 10 years
back. The new machine learning algorithms will be capable to learn through trials and
experiences, reflex, adjust and self-sufficiently act in the dynamic environment as compared
with predefined rules for innovation methods [5]. In the future, the following are the areas
where you can find futuristic advancements in machine learning algorithms.
a) Utmost accurate results for Web Search Engines
b) Improved Tailor-made applications customization accuracy
¢) Riseof automated Robots or self-learning systems
d) A sudden and great increase in the usage of machine learning algorithmsin quantum
computing
€) More accurate predictions in the heathcare sector for disease prediction and drug
devel opment processes.
f) Automated end to end model development process
g) Machinelearning will be the new erafor manufacturing processes in the coming ten
years.
1.6 DATA PRE-PROCESSING
One of the important steps for enhancing the quality of data in machine learning. To extract
meaningful information from the data, this step plays an important role. This step cleans and
organizes the raw data in such a way so that this data is useful for training the machine
learning models. In other words, it can be said that raw data is transferred into a readable and
understandable format.

17 WHY DATA PRE-PROCESSING

As the real-world data is unreliable, inadequate, inaccurate, erroneous and it is not suitable
for training the models. This scenario creates the need for data pre-processing. In this initial
step of the machine learning process, the raw data is cleaned, completed, formatted, and
organized such that training for models can be performed using this data [6].

18 STEPSIN DATA PRE-PROCESSING

There are seven steps while working on the data pre-processing [6] and these are listed as
with explanation.

1) Get the dataset

This is the initial step of data preprocessing in machine learning. To run your machine
learning models, you must have a pertinent dataset. To get a proper dataset, data should be
collected from many different primary or secondary sources and should be properly formatted
accordingly to the use cases. For example, the textile industry dataset should contain
information about textile data, citrus fruit disease dataset should contain information about

6

different types of citrus fruits and their disease data. Many online sources are also available to
download the data like Kaggle, UCI machine learning repository, etc. The private dataset
should be made by doing surveys, interviews and using different Python APIs.

2) Import all relevant libraries

This is the second step of data pre-processing. Python programming language is one of the
most popular and leading languages to solve the complex problems and tasks associated with
machine learning and data analytics. To develop machine learning programs for particular
tasks, python libraries are extensively used and beneficial. These predefined libraries can do
data-specific pre-processing tasks. Some of the popular libraries are:

a) NumPy: This is one of the python cores packages for doing scientific and
mathematical operations. It stands for Numerical Python and was formed by Travis
Oliphant in the year 2005. This package consists of functions that can do linear
algebra, arrays, and Fourier transforms operations.

b) Pandas: This open-source library was built by McKinney in 2008 and used to perform
data analysis, data cleaning, data manipulation, and data exploration. This library is
mainly used to import the different datasets.

c) Matplotlib: This open-source library was formed by John D. Hunter. This is used to
plot quality charts and figures. Thisis popularly known as a 2D plotting library. Most
segments of this library are written in Python and other segments are written in
Javascript, C, and Objective-C.

3) Import the dataset

Before running the machine learning model, it is important to import the dataset. You can
import the dataset in many ways, one of the ways is to set the current directory as a working
set and another way is to give the absolute path of the file. After setting up the path, use
read_csv() of the pandas' library to import the dataset in the program, this function can read a
CSV fileeither it is stored locally on a computer or with the help of aURL.

Example: data=pd.read csv(r'E:\Jagat Open State University\M achine |earning\jobl.csv')

where jobl.csv is the dataset having attributes like country, age, expected salary and job
granted respectively. Here, country, age and ExpectedSalary are independent variables
whereas JobGranted is a dependent variable. Extraction of these variables is an important step
before running any machine learning model. For extraction of these variables from the
dataset, pandas library function “iloc[]” will be used. It helps in the extraction of selected
rows and columns.

x= data.iloc[:,:-1].values

Here, in the above line code of iloc[] function, first colon represents al rows and second
colon represents al columns. The value of -1 indicates that leave the last column from the
dataset as it is an dependent variable. After executing the above code line, the result will be

of independent variables and the result is like:

[['India 28.0 45000.0]

['USA' 28.0 34000.0]
['Spain’ 36.0 42000.0]
['USA'" 45.0 90000.0]
['Spain’ 38.0 nan|
[nan 54.0 89000.0]
['India nan 67000.0]
['Spain’ 53.0 88000.0]
['Spain’ 32.0 40000.0]
['USA' 44.0 98000.0]]

y= datailoc|:,3].values

When you run the above code line, the first colon represents all rows and 3 represents only 3
column. In other words, it can be said that only the last column (i.e., JobGranted) with all
rowsis extracted. Thisisthe dependent variable. The output of the above line codeis as:

array(['No', 'Yes, 'Yes, ‘N0, 'Yes, 'Yes, 'No', 'Yes, 'Yes, 'No,dtype=object)

4) ldentify and Handle the missing valuesin the dataset
When you are dealing with the real-time dataset you will find missing values for many
attributes. This can be due to incomplete extraction, failure to load the complete information,
or corrupt data. One of the mgor challenges faced by software developers is to handle the
missing values in such a way that robust models will be generated. There are many ways of
handling missing values and for these python libraries like pandas, NumPy and Scikit are
mostly used.

Use the below-mentioned code line to know which attributes in the dataset have missing
values:
data.isnull().sum()

Theoutput is:

Country 0
Age 1
ExpectedSdary 1
JobGranted 0
dtype: int64

From above, it can be seen that age and ExpectedSalary have one missing value each.

To handle these missing values, different ways are used and some of the ways are mentioned
below:

i. Deleting rows having missing values

One of the most commonly used methods to handle missing values. Delete the particular row
if it has a missing or null value and deletes the particular column if it has more than 50% of
missing or null values. This scenario is only suitable if alarge dataset is available. Important
things that have to be kept in mind while deleting data is that no biasness should be added
and there is always aloss of information which may lead to inaccurate predictions [7].

In the above dataset, you have seen two rows are having missing values and these can be
dropped and checked whether these rows have been dropped or not using the below lines of
code:

data.dropna(inplace=True) # Drop the rows
data.isnull().sum() # Check missing rows
ii. Replacing with Mean/Median/Mode

This approximation statistica method is applied to the attributes/features that are having
numerical data like age or ExpectedSalary. Here, calculate the mean, median, or mode of the
feature and replace the missing value with the calculated value. This method adds variance to
the dataset but is better than removing rows and columns from the dataset [7]. The code lines
are

a) Replacing with mean value

data['Age].isnull().sum() # Outputisl

data'AgeT].mean() #Output is39.77777777777778

data['Age].replace(np.NaN,data]'Age].mean())
#Output

28.000000

28.000000

36.000000

45.000000

38.000000

54.000000

39.444444 #Bold valuereplaced with mean
53.000000

32.000000

44.000000

Name: Age, dtype: float64

© 00O ~NO Ul WDNPELO

b) Replacing with median value
data['Age].isnull().sum() # Output is1
data['Age].median() #Output is38.0

data['Age].replace(np.NaN,data]'Age’].median())
#Output

25.0

28.0

36.0

45.0

38.0

54.0

38.0 #Bold valuereplaced with median
53.0

32.0

440

Name: Age, dtype: float64

©O© 0o ~NOoO Ol WNEFEL O

¢) Replacing with mode value
data['Age].isnull().sum() # Output is1
data['Age].median() #Output is28.0
data['Age] fillna(data]'AgeT].mode()[Q])
#Output

28.0

28.0

36.0

45.0

38.0

54.0

28.0 #Bold valuereplaced with mode value
53.0

32.0

440

Name: Age, dtype: float64

d) Unique Category Assignment

©O© oo ~NO Ol WDNELO

A categorical feature consists of many possibilities of classes and their missing class values
can be assigned with another class like Unknown denoted as ,,U*. This tactic will add more
information in the data that changes the variance of the data. Since categorical data must be
converted into numerical data using a one-hot encoding such that machine learning
algorithms must understand the data.

data['Country'].head(7)

10

#Output

India
USA
Spain
USA
Spain
NaN
India
Name: Country, dtype: object

OOl WNPEFEL O

Thefollowing implementation linewill tell that how to put Unknown value,,U* for category
value.

data['Country'] fillna('U").head(7)
#Output

0 India

1 USA

2 Span

3 USA

4 Span

5 U

6 India

Name: Country, dtype: object

e) Usethe machine learning algorithms that support missing values

The agorithms like Random Forest and KNN of machine learning algorithm supports
missing values if they are present in the data. These algorithms maintain the high variance
that is present in the data.

5) Encodethe categorical variable

The dataset jobl.csv has two categorical variables and these are Country and JobGranted. As
machine learning algorithms creates many problems when they work on the categorical data,
so it must be converted into numerical data. For example, country column is converted into
numerical data using LabelEncoder() class. Thisis present in the sci-kit library.

Following lines of code, encode the country O for India, 1 for Spain, 2 for USA and 3 for U
from sklearn.preprocessing import Label Encoder

label_encoder_x= LabelEncoder()

X[:, O]=label _encoder_x.fit_transform(x[:, 0])

print(x)

#Output

11

[[0 28.0 45000.0]

[2 28.0 34000.0]

[136.0 42000.0]

[2 45.0 90000.0]

[1 38.0 nan|

[354.0 89000.0]

[0 nan 67000.0]

[1 53.0 88000.0]

[1 32.0 40000.0]

[2 44.0 98000.0]]
This encoding of categorical may affect the outcome as algorithms treat these categorical
numerical data as some relationship. To avoid this effect, a dummy variable concept is
introduced. For the above categories values of 0,1,2 and 3, four columns will be generated
having values 0 and 1. Dummy encoding is used for the generation of columns using
OneHotEncoder and the code is:

Step 1
dummies = pd.get_dummies(data]'Country’])
print(dummies)

#Output

India Spain USA

0

© O N o 0o A W N B O
O O O B O O O O O
©O B B O O FrBr O kL, O

P O O O O O B O kFr O

)
8
N

merg = pd.concat([data,dummies],axis="'columns)
print(merg)
#Output

12

Country Age ExpectedSaary JobGranted India Spain USA
India 28.0 45000.0 No 1 0O
USA 280 340000 Yes O 0 1
Spain 36.0 42000.0 Yes O 1 O
USA 450 90000.0 No O O 1
Spain 38.0 NaN Yes 0 1 O

India NaN 67000.0 No

Spain 32.0 40000.0 Yes

0
1
2
3
4
5 NaN 54.0 89000.0 Yes
6
7
8
9 USA 440 98000.0 No

o B P O O
R O O O o

0
1
Spain 53.0 88000.0 Yes O
0
0

Step3:

final = merg.drop(['Country’,'USA"] ,axis="columns))

print(final)

#OutputAge ExpectedSaary JobGranted India Spain

0 28.0 45000.0 No 1 0
1 28.0 34000.0 Yes O 0
2 36.0 42000.0 Yes O 1
3 450 90000.0 No O 0
4 380 NaN Yes O 1

5 54.0 89000.0 Yes O 0
6 NaN 67000.0 No 1 0
7 53.0 88000.0 Yes O 1
8 32.0 40000.0 Yes O 1
9 440 98000.0 No O 0

6) Dataset Division or Split

The next step in the data pre-processing is the division of the dataset into a training and
testing set. The training set is the subset of the dataset and is used to train the machine
learning model. Testing set is used for testing the developed model to do the predictions. The
dataset is divided generally into the ratio of 70:30 or 80:20. It means 70% or 80% of datais

13

used for training the model whereas the rest 30% or 20% is used for testing the machine
learning model. This division process of data depends upon the shape and size of the dataset.

Firstly look the independent variables after performing the above mentioned steps:

x= final.iloc[:,[0,1,3,4,5]].head(10) #Indepenedent Variables

print(x)

#Output

Age ExpectedSaary India Span U
28.000000 45000.0 1
28.000000 34000.0
36.000000 42000.0
45.000000 90000.0
38.000000 67000.0

39.777778 67000.0
53.000000 88000.0

32.000000 40000.0
44.000000 98000.0

o O O B O O O O O
o »r b O O B O +—» O O
o O O O B O O O O O

0
1
2
3
4
5 54.000000 89000.0
6
7
8
9

Now, look at the data of the dependent variable after performing above mentioned
preprocessing steps:

y=final.iloc[:,2].head(10) #Indepenedent Variables

print(y)
#Output

No
Yes
Yes

No
Yes
Yes

No
Yes
Yes

No
Name: JobGranted, dtype: object

©O© 0o ~NOo ol h WNEFELO

14

Now, divide the dataset into training and testing dataset using the following lines of code:
from sklearn.model _selection import train_test_split

x_train, x_test,y train,y_test=train_test split(x,y, test size= 0.2, random_state=0)
print(x_train)

Thefirst line divides the dataset into training and testing randomly. The second line of code
contains four variables and these are:

e X_train—featuresfor the training data

o X _test—featuresfor thetest data

e Yy train— dependent variables for training data
e Yy test—independent variable for testing data

The function train_test _split() is used and have four parameters. The first two parameters
represent arrays of data and the third parameter denotes the test size and it may be 0.3, 0.2 i.e.
30% or 20% respectively for testing the model. The last parameter random_state sets the seed
for arandom generator so that the output is always the same.

Thethird line will print the following output

Age ExpectedSalary India Span U
38.000000 67000.0
44.000000 98000.0
28.000000 34000.0
39.777778 67000.0
53.000000 88000.0
45.000000 90000.0

28.000000 45000.0
54.000000 89000.0

o O W ~N o »r © b
o »r O O +» O O o
o o o b O O O Pk
O O O O o o o

7) Feature Scaling

This is the last step in the data pre-processing of machine learning. This method is used to
standardize the independent variables of the dataset such that they are on the same scale and
are comparable. Look in the dataset, Age and ExpectedSalary are independent variables and
when they are compared, ExpectedSalary will dominate as it has much higher values than
Age and will result in incorrect results. This issue will be reduced by performing feature
scaling on the dataset. It is generally performed using two ways and these are:

a) New_vaue = (origina_vaue— mean(origina_value)) / standard deviation
b) New_vaue = (origina_value — min(original_value)) / (max(origina_value) — min
(origina_vaue))

15

For standardization, run the following code:

from sklearn.preprocessing import StandardScal er
st x= StandardScaler()
x_train=st_x.fit_transform(x_train)

print(x_train)

Here, in the first line, StandardScaler class is imported for doing the standardization. The
second line of the code indicates that an object of the StandardScaler class is created for
independent variables. The third line shows that fir and transforms function is used for the
training dataset but if the test dataset is there, you can directly apply the transform() function.
There is no need to apply the fit_transform() function as it has been aready performed in the
training set. The fourth line prints the output for the x_train dataset and it is mentioned below
and liesintherange of -1 and 1.

[[-0.34794225 -0.24192328 -0.57735027 1.73205081 -0.37796447]
[0.29995021 1.1865761 -0.57735027 -0.57735027 -0.37796447]
[-1.42776301 -1.76258391 -0.57735027 -0.57735027 -0.37796447]
[-0.15597411 -0.24192328 1.73205081 -0.57735027 -0.37796447)
[1.2717889 0.72576985 -0.57735027 1.73205081 -0.37796447)
[0.40793229 0.8179311 -0.57735027 -0.57735027 -0.37796447]
[-1.42776301 -1.25569704 1.73205081 -0.57735027 -0.37796447)
[1.37977098 0.77185047 -0.57735027 -0.57735027 2.64575131]]
19 SELFE-CHECK QUESTIONS

i. Which of thefollowing is the best option for handling corrupted or missing datain the
dataset?
a) Usemean/mode/median values for filling missing valuesin the dataset
b) Inthe case of categorical values, the unique category can be assigned to missing
values.

¢) Missing columns or rows can be dropped.
d) All of these

ii. List out the correct challenges that you may face while applying one-hot encoding on
categorical variables.
a) Inthetesting dataset, some categories of categorical variables are absent.
b) Training and Testing datasets have an equal distribution of categories.
c) Both options A and B
d) Only A

iii. datais used for building models of machine learning.
a) Traning

16

b) Transfer
¢) Missing
d) Corrupted

iv. Thefather of machinelearningis
a) Geoffrey Everest Hinton
b) Everest Gill
¢) Hinton Geff
d) Javed Gill
v. Labelled datais used in what type of machine learning?
a) Supervised learning
b) Unsupervised learning
¢) Reinforcement learning
d) None of these
vi. Choosethe best correct option that best describes supervised learning.
a) Theinput dataislabelled and machinelearning algorithms learn to predict the
output values from the given input data.
b) Theinput datais unlabeled and machine learning algorithmslearn the inner
structure from the given input data.
c) It can have both labelled as well as unlabeled data that suits output values.
d) All of these
vii. Choosethe best correct option that best describes unsupervised learning.
a) Theinput dataislabelled and machinelearning algorithms learn to predict the
output values from the given input data.
b) Theinput datais unlabeled and machine learning algorithmslearn the inner
structure from the given input data.
c) It can have both labelled aswell as unlabeled data that suits output values.
d) All of these
viii. Giverea-time examples of semi-supervised learning and reinforcement learning.
iX. What do you understand by Standardization methods?
x. Differentiate fit_transform() and transform() function.
xi. What isthe impact when you drop rows and columns of missing data?
xii. Elaborate whether import the dataset and get the dataset are two different stepsin data
pre-processing?
1.10 SUMMARY

This module helps the students to understand that a particular problem lies in supervised
learning, unsupervised, reinforcement, or semi-supervised learning area. A detailed
discussion about the types of machine learning has been done. The students will be able to do
data pre-processing on the datasets such that they are ready for performing machine learning
algorithms. Deep discussions about how to import libraries and datasets, how to handle
missing data, and how to split the data into training and testing data have been done.
Different applications of machine learning have been discussed. This module helps the
students in building up the basic blocks of machine learning that are required for doing hard
problems or competitive problems at | ater stages.

17

1.11 UNIT END QUESTIONS

i. Select the type of supervised machine learning from the following options.

a) Regresson
b) Classification
c) Bothaandb
d) None of these

ii. Which of the following is the correct option while working on Unsupervised learning?
a) Inputs are absent
b) Output values are not present
c) Both inputs and outputs are absent
d) Output values are present

iii. At present which is the best language to work on machine learning programs?
a) Python
b) Java
c) C
d HTML

iv. Ismathematics play an important role in advanced |earning concepts of machine
learning?
a) Yes
b) No

v. Explainindetail the useof train_test_split() function.

vi. Giveinsights about feature scaling with appropriate examples.

vii. List out the methods for encoding categorical variables along with suitable examples.
viii. Givedetails about theimportant libraries that are used for performing machine

learning algorithms.

iIX. Mention an example for each category of machine learning.

X. Discussthe future of machine learning in detail.

xi. Differentiate regression and classification in supervised learning.

REFERENCES

[1] https.//www.geeksforgeeks.org/getting-started-machine-learning/

[2] https.//searchenterpriseai .techtarget.com/definition/machine-learning-ML

[3] https.//www.simplilearn.com/tutoria s/machine-learning-tutorial/machine-learning-
applications

[4] https.//medium.com/app-affairs/9-applications-of -machine-learning-from-day-to-day-life-
112a47a429d0

[5] https.//www.ana yticsvidhya.com/blog/2021/02/the-exciting-future-potential -of -machine-
learnin

[6] https.//www.upgrad.com/blog/data-preprocess ng-in-machine-learning/

[7] https.//ana yti csindiamag.com/5-ways-handle-missing-val ues-machine-learning-datasets/

18

https://www.geeksforgeeks.org/getting-started-machine-learning/
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://www.simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-applications
https://www.simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-applications
https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0
https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0
https://www.analyticsvidhya.com/blog/2021/02/the-exciting-future-potential-of-machine-learning/
https://www.analyticsvidhya.com/blog/2021/02/the-exciting-future-potential-of-machine-learning/
https://www.upgrad.com/blog/data-preprocessing-in-machine-learning/
https://analyticsindiamag.com/5-ways-handle-missing-values-machine-learning-datasets/

MACHINE LEARNING
UNIT Il: REGRESSION

STRUCTURE

2.0 Introduction
2.1 Objectives
2.2 Linear regression
2.2.1 Linear Regression Code
2.2.2 Regression Assumptions
2.2.3 Linear Regression Code
2.3 MultipleLinear Regression
2.4 Hypothesis Testing and p-value
2.4.1 Example p-valuein Linear Regression
2.4.2 Example p-valuein Multiple Regression
243 Key TermsUsed in Regression
2.5 Polynomial Regression
2.6 Comparison of Linear and Polynomial Regression
2.7 Self-check Questions
2.8 Summary
2.9 Unit End Questions

19

2.0 OBJECTIVES

» Knowledge about the Independent (explanatory) variables and a dependent (response)
variable has been given along relation with each other has been figured ouit.

» How much independent variables will impact the dependent variables?

» Studentswill know about linear, multiple, and polynomial regression and even they
can compare in which situation which regression technique will be used.

> Studentswill be able to do the python code for the regression themselves.

» Students can visualize the data by using python libraries.

21 INTRODUCTION

This module discusses regression in detail along with linear regression, multiple regression,
and polynomial regression. Basic assumptions about the regressions have aso been
described. For every regression topic explanation, proper python code is given with output.
To understand regression concepts, there is a need to understand p-value, hypothesis testing,
and other model relevancy parameters. All these concepts have aso been explained with
suitable examples and python code. The focus of this module is on graduate students who
want to learn how independent variables are related to dependent variables. The main target
of this module is to inculcate the basics of different methods that are used for linear
regression, multiple as well as polynomial regression. Students will have a clear
understanding of dependent as well as independent variables along with regression equations.
Moreover, for visualization of different models that have been developed by the students, the
students have shown the use of python libraries that help the students to visualize the model
results and improve the model performance after looking at the visualization results. The
module is focused on regression problems and how python coding skills can be used to
handle these problems. How the dataset is divided into training and testing set using python
libraries has aso been explored with many examples. At the section end, different types of
regressions are compared visually with suitable python code so that students will have a clear
understanding of the challenges and methods used in these regression techniques.

22 LINEAR REGRESSION INTRODUCTION

Linear regression is the key technique in supervised machine learning. The goal is to perform
regression tasks. It predicts the value based on the independent variable. In other words, we
can say, itstask isto predict the response or dependent variable (Y) value when you are given
one explanatory or independent variable (X). You are targeting to find the linear relationship
among them [1]. One of the important things to remember is that Y should have continuous
values.

Given below in equation 1 isthe Hypothesis function:

Y=%$+ $.X D
where

X isan input variable

Y isoutput (continuous) variable

20

When the model is trained, the goal is to predict the value of the Y when you are given an X
value. The model finds the value of $ and $: for the best regression fit line. $ and $; are
intercept and coefficient of X respectively.

XvsY

120000
110000
100000

., 90000

80000
70000

60000

Figure1: Linear Regression Example
Examples of linear regression:

a) Predict the market value of the shops.
b) Predict the stock price

c) Predicting the weight of a person

d) Person height prediction

2.2.1Linear Regression Code Steps
It consists of seven steps and they are listed as:

a) Firstly, import the dataset

b) You can visualize the dataset using python commands (optional step)

c) After importing, split the dataset into training and testing sets. The training set should
be between 70% to 95% of the dataset.

d) You can visualize training and testing set using python code (optional step)

e) Usethe LinearRegression model and train the algorithm using the training set of the
dependent variable and independent variable.

f) Now predict the output of the agorithm using the testing test of the independent
variable of the training set.

g) Visualizethe accuracy and different evaluation metrics using python code.

2.2.2 Regression Assumptions

It is a parametric approach. It means this approach is not suitable for prediction when its
basic assumptions are not fulfilled. Any dataset must fulfill these assumptions before using
regression. The assumptions of regression are [2]:

a) It assumes that a linear relationship should be present among the explanatory and
response variable. It means if there is a unit change in the explanatory variable value
then there must be only constant change in the response variable value. The effect of

21

the independent variable on the dependent variable is independent of other variables
of the dataset.

If there is no linear relationship found then the model will result in doing wrong
predictions. To check whether alinear relationship exists or not, use residual vs fitted
plots.

b) No multicollinearity should exist between independent variables. In other words, it
can be said that independent variables should not be correlated. If multicollinearity is
present then model accuracy is drastically reduced and its presence is checked by
using a scatter plot as well as you can check the VIF factor value and if it is greater
than 4, it means multicollinearity is present.

¢) Homoskedasticity: The constant variance must be there in error terms. If it is not there
then it is called heteroskedasticity. The heteroskedasticity impacts the confidence
interval as well as the model’s performance. To check its presence you can use
residual vs fitted values plot or Breusch-Pagan / Cook — Weisberg test or White
general test

d) There should be a normal distribution of error terms. If it is not there, it also impacts
confidence interval and it becomes difficult to determine coefficients correctly. You
can check its presence using the QQ plot as well as the Kolmogorov-Smirnov test,
Shapiro-Wilk test.

2.2.3 Linear Regression Code

Firstly import libraries matplotlib for making plots and pandas for importing the dataset
import matplotlib.pyplot as mp

import pandas as pnds

The below mentioned line is to import the dataset
dataset=pnds.read_csv(r'E:\Jagat Open State University\Machinelearning\X_Y .csv’)

print(dataset) # The rows and columns of the dataset is printed

Output

0
1
2
3
4
5
6
7
8
9

XY

3 3223
2 2123
4 4345
5 5498
6 6578
11234
7 7687
7 7569

4 4456
3 334

10 8 8798

22

11 9 9897
12 8 8865
13 9 9900
14 2 2221
15 5 5489
16 9 9921
17 1 1090
18 4 4412
19 6 6599
20 6 6578
21 1 1234
22 7 7687
23 7 7569

24 4 4456
25 3 33%4

dataset.shape # To know the number of rows aswell as columnsin the dataset
Output
(26,2)
dataset.describe()
Aboveline of codeis used to get some statistical information
#Output
X Y
count 26.000000 26.000000
mean 5.038462 5543.730769
sd 2584272 2822.362805
min 1.000000 1090.000000
25% 3.000000 3354.000000
50% 5.000000 5493.500000

75% 7.000000 7657.500000
max 9.000000 9921.000000

Storethe independent variable “x” valuesin “datax”

datax=dataset.iloc]:,:-1] .va ues.reshape(-1,1)

23

Store the dependent variablevalues “y” in “datay”
datay=dataset.iloc|:,1] .values.reshape(-1,1)

Below you find code that helps to divide the data, 75% of datafor training and 25% data for
test

from sklearn.model _selection import train_test_split

datax_tn, datax_tt, datay tndatay tt = train_test split(datax,datay,test size=1/4,
random_state=0)

Now after splitting data, it’s time for training the algorithm using training data. Use
LinearRegression class and fit() method for getting fit line

regr = LinearRegression()
reg.fit(datax_tn, datay tn)
Print intercept value
print(regr.intercept)
#Print slope value
print(regr.coef_)

#Output

[40.14484536]
[[1092.29948454]]

datay pred = regr.predict(datax_tt) # Predicting the data using testing data

dataf = pnds.DataFrame({ 'Actual": datay _test.flatten(), 'Predicted": datay pred.flatten()})
print(dataf)

#Output

Actua Predicted
4345 4400.342784
6578 6593.941753
2221 2224.743814
1090 1132.444330
1234 1132.444330

9897 9870.840206
7687 7686.241237

SOk~ WDNPFP O

regr.score(datax_tt,datay _tt)

24

#Output

0.999756848620213
Above output shows the accuracy of the model built

mp.scatter(datax_tt, datay tt, color='gray’)
mp.plot(datax_tt, datay pred, color="red', linewidth=2)
mp.show()

#Output

10000

8000

G000

4000

2000

1 2 3 4 5 B 7 8 9

Figure2: Linear Relationship Between X and Y

The above output in figure 2 shows the model is precise.

import sklearn.metrics as metrics

print(metrics.mean_absolute _error(datay tt, datay pred))
print(metrics.mean_squared_error(datay _tt, datay pred))

import numpy as ny
print(ny.sgrt(metrics.mean_squared_error(datay _tt, datay pred)))
#Output

36.420986745213085

2458.3050307077006

49.58129718661766

The agorithm performance can be known if you have the values for the above three
metrics. [3].

23 MULTIPLE LINEAR REGRESSION
This is popularly aso known as multivariate linear regression. It is having two or more two
independent variables whereas, in linear regression, only one independent variable is there

[4].

Hypothesis function for Linear Regression:

25

Y=8$+%.X1+5Xo+....... + & Xn +e 2

where the dependent variableis Y, the intercept is $, regression line coeffcients are $1, $», ...
$n, and the error term is denoted as e in equation 2.

Supposg, there are two independent variables then the above equation 2 will become equation
3. Thegoal hereisto estimate the values of $, $1, $2 such that predictions are close to actual
values and it should be close to a perfect model.

Y=%$+%.X1+HXo+e 3

2.3.1 MultipleRegression Code

import matplotlib.pyplot as mp

import pandas as pnds

dataset=pnds.read_csv(r'E:\Jagat Open State University\Machine
learning\M ultipleRegression.csv')

print(dataset)

#Output

X1 X2 X3 Y
3 289 33 3223
2 212 22 2123
4 398 44 4345
5 489 55 5498
6 612 66 6578
1 98 11 1234
7 689 77 7687
7 713 72 7569
4 401 41 4456
3 298 31 33%4

10 8 812 88 8798

11 9 899 99 9897

12 8 799 83 8865

13 9 923 92 9900

14 2 212 20 2221

15 5515 51 5489

16 9 945 91 9921

17 1101 10 1090

18 4 412 47 4412

19 6 654 69 6599

20 6 597 68 6578

21 1102 16 1234

22 7 700 79 7687

23 7 745 74 7569
24 4 444 49 4456

O© 00N Ol WNEFEO

26

25 3 299 39 33%4

dataset.shape
#Output
(26, 4)

dataset.describe()
#Output
X1

count 26.000000

mean 5.038462

std 2.584272

min 1.000000

25% 3.000000

50% 5.000000

75% 7.000000

max 9.000000

X2

26.000000

513.769231

264.348907

98.000000

298.250000

502.000000

709.750000

945.000000

datax=dataset.iloc[:,0:3] .vadues
datay=dataset.iloc[:,3] .values

print(datax)

#Output

[[3289 33]
[2212 22]
[4398 44]
[5489 55]
[6612 66]
[1 98 11]
[7689 77]
[7713 72]
[4401 41]
[3298 31]

[8812 88
[9899 99]

X3

26.000000

54.884615

26.992335

10.000000

34.500000

53.000000

76.250000

99.000000

27

Y

26.000000

5543.730769

2822.362805

1090.000000

3354.000000

5493.500000

7657.500000

9921.000000

[8799 83
[9923 92]
[2212 20]
[5515 51]
[9945 91]
[1101 10]
[4412 47]
[6654 69
[6597 69
[1102 16]
[7700 79
[7745 74]
[4444 49
[3299 39]]

print(datay)

#Output
[3223 2123 4345 5498 6578 1234 7687 7569 4456 3354 8798 9897 8865 9900
2221 5489 9921 1090 4412 6599 6578 1234 7687 7569 4456 3354]

from sklearn.model_selection import train_test_split
datax_tn, datax_tt, datay tn,datay tt=train_test split(datax,datay,test size=1/4,
random_state=0)

from sklearn.linear_model import LinearRegression
regr = LinearRegression()
regr.fit(datax_tn, datay_tn) # algorithm training

#Print intercept value
print(regr.intercept)

#Print slope value
print("Coefficients:")
list(zip(datax, regr.coef))
print(regr.coef_)

#Output

12.361448620703413

Coefficients:

[1.08705441e+03 -4.31213228e-01 5.03831029e+00]

datay pred = regr.predict(datax_tt)
dataf = pnds.DataFrame({ 'Actual’: datay _test.flatten(), 'Predicted": datay pred.flatten()})

28

print(dataf)

#Output

Actual Predicted
0 4345 4410.641858
1 6578 6619.858684
2 2221 2195.819261
3 1090 1106.246421
4 1234 1112578371
5
6

9897 9906.983124
7687 7717.919540

regr.score(datax_tt,datay tt)*100
#Output
99.96784301426158

import sklearn.metrics as metrics

print(metrics.mean_absolute error(datay _tt, datay pred))
print(metrics.mean_squared_error(datay _tt, datay pred))

import numpy as ny
print(ny.sgrt(metrics.mean_squared_error(datay tt, datay pred)))

#Output
44.46457075920447
3251.1302170031745
57.018683052164356

24 HYPOTHESISTESTING AND P-VALUE

This is one of the statistical procedures that is used to validate the results. It includes two
statements, one is the null hypothesis and another one is the alternate hypothesis, they are
notated as Ho and Ha respectively.

For example:
Ho: Thereis no statistically significant relationship exists between variables X and Y.
Ha: Thereis astatistically significant relationship exists between variables X and Y.

The two things can happen now whether the null hypothesis is rejected or accepted. If we
reject the null hypothesis, it means the alternate hypothesis is accepted and it means there
exists a significant relationship between X and Y. This rgection and acceptance are done by
looking at the p-value. The common threshold value for the p-value of 0.05. Here, 0.05
means that 5% of the time, the null hypothesisis falsely reected.

29

Note: Ho is rgjected if the value of p is less than 0.05 and it means a significant relationship
exists unless Ho is accepted and it means a significant relationship does not exist between
them. You can say that the p-value plays a very vital role in the acceptance and rejection of a
hypothesis.

2.4.1 Example: p-valuein Linear Regression

import pandas as pnds

dataset=pnds.read_csv(r'E:\Jagat Open State University\Machinelearning\X Y .csv")
print(dataset)

#Output

X Y

3 3223
2 2123
4 4345
5 5498
6 6578
1 1234
7 7687
7 7569
4 4456
3 334
10 8 8798
11 9 9897
12 8 8865
13 9 9900
14 2 2221
15 5 5489
16 9 9921
17 1 1090
18 4 4412
19 6 6599
20 6 6578
21 1 1234
22 7 7687
23 7 7569

24 4 4456
25 3 33%4

© 00N Ul WNEFEO

import statsmodels.api assmls

X_data = dataset['X"]

y_data = dataset["Y"]

z data=smls.add _constant(x_data)
intermediate_model =smIs.OLS(y_data, z_data)

30

final_model =intermediate_model.fit()
print(final_model.summary())

#Output
OLS Regression Results
Dep. Vari abl e: Y R-squared: 1. 000
Model : AO.S Adj. R squared: 1. 000
Met hod: Least Squares F-statistic: 5. 140e+04
Dat e: Mon, 08 Nov 2021 Prob (F-statistic): 1.72e-41
Ti me: 19: 02: 24 Log- Li kel i hood: -143. 25
No. (bservati ons: 26 AC 290.5
Df Resi dual s: 24 Bl C 293.0
Df Model : 1
Covari ance Type: nonr obust

coef std err t P> t| [0. 025 0. 975]
const 42, 3564 27. 162 1.559 0.132 -13.70 98. 416
X 1091. 8758 4.816 226.712 0. 000 1081.936 1101. 816
Omi bus: 1. 045 Dur bi n- WAt son: 1.686
Pr ob(Omi bus): 0.593 Jarque-Bera (JB): 0.942
Skew: -0.420 Prob(JB): 0.624
Kurtosis: 2.597 Cond. No. 12.9

Here, the p-value can be seen in P>|t| and it is 0.000 in front of the X variable which is less
than 0.05. So, the null hypothesisis rejected or in other words, it can be said that the alternate
hypothesis is accepted. It means there exists a significant relationship between the X and Y
variable.

In the above program, the Ordinary least squares (OLS) method of linear regression is used
and this method is in Python’s Statsmodels module.

2.4.2 Example: p-valuein Multiple Regression

import pandas as pnds

dataset=pnds.read_csv(r'E:\Jagat Open State University\Machine
learning\MultipleRegression.csv')

print(dataset)

#Output

X1 X2 X3 Y
0 3289 33 3223
1 2212 22 2123
2 4 398 44 4345
3 5489 55 5498
4 6 612 66 6578
5 1 9811 1234
6
7

7 689 77 7687
7 713 72 7569

31

8 4 401 41 4456
9 3298 31 3344
10 8 812 88 8798
11 9 899 99 9897

12 8 799 83 8865
13 9 923 92 9900
14 2 212 20 2221
15 5 515 51 5489
16 9 945 91 9921
17 1 101 10 1090
18 4 412 47 4412
19 6 654 69 6599
20 6 597 68 6578
21 1 102 16 1234
22 7 700 79 7687
23 7 745 74 7569

24 4 444 49 4456
25 3 299 39 3344

import statsmodels.api assmls
import numpy as np

X_data=np.column_stack((dataset["X 17, dataset[' X2, dataset['X37))

y_data= dataset['Y"]
z_data=smls.add_constant(x_data)
intermediate_model =smls.OLS(y_data, z_data)
fina_model = intermediate_model .fit()

print(final_model.summary())

#Output
CLS Regression Results

Dep. Vari abl e: Y R-squared: 1. 000
Model : QS Adj. R squared: 0. 999
Met hod: Least Squares F-statistic: 1. 612e+04
Dat e: Mon, 08 Nov 2021 Prob (F-statistic): 6. 66e- 37
Ti ne: 19: 24: 05 Log- Li kel i hood: -142. 92
No. Cbservations: 26 AC 293.8
Df Resi dual s: 22 BIC 298.9
Df Model : 3
Covari ance Type: nonr obust

coef std err t P>t [0.025 . 975]
const 34.8594 29. 985 1.163 0. 257 -27.326 97. 045
x1 1085. 1265 86. 989 12. 474 0. 000 904. 722 1265. 531
x2 -0.2212 0.733 -0.302 0. 766 -1.741 1.299
x3 2. 8266 4.099 0. 690 0. 498 -5.675 11. 328
Omi bus: 0. 464 Dur bi n- WAt son: 1.691
Prob(Omi bus): 0.793 Jar que-Bera (JB): 0.592
Skew: -0.228 Prob(JB): 0. 744
Kurtosi s: 2.418 Cond. No. 4.01e+03

32

In the output, look at the values in P>[t| and the values are 0.000, 0.766, 0.498 for variables
X1, X2, and X3 respectively. It shows that X1 has a significant relationship with Y whereas
X2 and X3 do not have a significant relationship with Y.

2.4.3 Key Terms Used in Regression Outputsare

R-squared: It is denoted as R? and popularly known as the coefficient of
determination. It is a statisticd measure that helps in knowing the variance
proportion in the response variable that is explained by an explanatory variable or
variables. For example, R? is 0.75 then it means model inputs explain third-fourth of
the observed variation. The formula for the calculation of R? is mentioned in
equation 1.

R%?=1- UV/TV D
where UV is unexplained variation and TV istotal variation

R? also suffers from many limitations, it can not check whether there is biasness
involved in predictions and coefficient estimates. It is also not able to check the
adequacy of the model. A lower R2 value can come for a good model whereas a
higher R2 value can come for an inadegquate model.

Adjusted R-squared: It is the revised form of R2 that is adjusted when more
independent variables are included in the model. The value of adjusted R2 increases
when added independent variables improve the model and it decreases when added
extra independent variable decreases the model efficiency. But this is not the same
with R2, it aways increases when extra variables are added to the model.

F-statistic: 1t helps in figuring out the overal significance of the model. It is
calculated by finding out the ratio between model mean squared error and residuals
mean squared error.

Coef: In the output of the regression model, the coefficient is used for independent
variables values and the constant value used in the regression equation.

t: It denoted the t-statistic and it is calculated by doing a ratio of the difference
between hypothesized and estimated parameters values to the standard error.

25 POLYNOMIAL REGRESSI ON

When nth degree polynomia relationship is present between explanatory and response
variable, it is known as polynomia regression. To an extent, it is fairly like linear
regression [6]. But here the non-linear relationship is there and the elements in this are the
explanatory and conditional mean of the response variable.

2.5.1 Why thereisa need for the polynomial regression
In polynomial regression, the assumption of all independent variables is independent is not
satisfied.

33

When your regression line is curvilinear, then polynomial regression is used.

It provides a better approximation between the dependent variable and independent variable
if the relationship is non-linear.

2.5.2 Example of Polynomial Regression with Code and Explanation

Suppose there are variables, one independent variable x_date tells the day number whereas
y_cornstell the numbers of corns that are eaten on that particular day.

These two array values are mentioned as.
x_date=1[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,21,23]
y_corns=[102,92,81,79,62,61,59,55,61,63,68,69,74,75,78,79,88,93,97,102]

Firstly, going with model development, look at the scatter graph between x_date and y_corns
using python code 1.

CODE1

import matplotlib.pyplot as mp
x_date=[1,2,34,5,6,7,8,9,10,11,12,13,14,15,16,17,19,21,23]
y_corns=[102,92,81,79,62,61,59,55,61,63,68,69,74,75,78,79,88,93,97,102]
mp.scatter(x_date, y_corns)

mp.show()

Output (It is shown below in figure 3)

& ™
100 4
.
. .
0 &
&
80 ™ e ®
. .
T"U 1 . .
- .
&0 o o
™
0 5 10 1% 20

Figure 3. Scatter plot between x_date and y_corns

After looking at the scatter plot, draw the regression line between x_date and y_corns, and its
code is shown in code 2 and its output in figure 4 [7].

34

CODE 2

import numpy as ny

import matplotlib.pyplot asmp

from sklearn.metricsimport r2_score

Polynomial model is created with the help of numpy library
date_model_corns=numpy.polyld(numpy.polyfit(x_date, y corns, 3))

Below line of codetells how regression line will be displayed i.e. it startsfrom 1 and ends
at 23.
reg_line = ny.linspace(1, 23, 100)

mp.scatter(x_date, y_corns) # Thiswill help in drawing scatter plot

mp.plot(myline, mymodel (reg_line))
Thiswill help in drawing polynomial regression line

#Display the diagram:
mp.show()
#Output
&
100 -

m 5

E_U -

70 1

m 5

L
0 5 10 15 20

Figure 4. Polynomial Regression line between x_dateand y_corns

After running code 2, it is important to know how well x_date and y_corns are related. In
other words, it is important to know how well a relationship is associated with these
variables. If no relationship exists between these two variables x_date and y_corns then this
polynomial regression model will not be useful for predicting anything. So, R-Squared will
be useful to know how well they are associated with each other. If r-squared values are nearer
to 1, these variables are strongly related and if it is nearer to O then these variables are less or
not related to each other. R-squared values lie between O to 1.

35

Usethe following line at the end of CODEZ2 to find the r-squared value as sklearn helpsin
finding the r-squared value using the r2_score method.

print(r2_score(y_corns, date_model _corns(x_date)))

#Output
0.960913171163184

You can see in the above output, it lies nearer to 1 so a strong relationship exists between
independent variable x_date and dependent variabley_corns.

The most important thing is now, to predict future values. It means how much corn will be
eaten on day 13. Predict using the above polynomia regression model. To do this add the
following lines at the end of CODE2.

eating_capacity = date_model _corns(12)
print(eating_capacity)

#Output

66.90762773392811

It can be seen prediction is nearer to the actual corns eaten on that day.

26 COMPARISON OF LINEAR AND POLYNOMIAL REGRESSION

import matplotlib.pyplot asmp

import pandas as pd

dataset=pd.read_csv(r'E:\Jagat Open State University\M achine
learning\pol yregression.csv')

print(dataset)
#Output

X_date y_corns
0 1 102
1 2 92
2 3 81
3 4 79
4 5 62
5 6 61
6 7 59
7 8 55
8 9 61
9 10 63
10 11 68
11 12 69

36

12 13 74

13 14 75
14 15 78
15 16 79
16 17 88
17 19 93
18 21 97
19 23 102

X_date=dataset.iloc][:,:-1] .values.reshape(-1,1)
y_corns=dataset.iloc|:,1] .values.reshape(-1,1)

from sklearn.linear_model import LinearRegression
Irl = LinearRegression()

Irl.fit(x_date, y_corns)
from sklearn.preprocessing import Polynomial Features

py = Polynomial Features(degree = 4)
X_py = poly.fit_transform(x_date)

py.fit(X_py, y_corns)

[r2 = LinearRegression()

[r2.fit(X_py, y_corns)

For visualization of the results in a better way, the following lines of code is used
mp.scatter(x_date, y_corns, color = 'bluge’)

mp.plot(x_date, Irl.predict(x_date), color = 'red’)
mp.title('Linear Regression’)

mp.xlabel ('x_date)

mp.ylabel('y_corns)

mp.show()

#Output (see linear regression model in figure 5)

37

Linear Regression

] []
100 +
L
®]

m .
[}

E 8O-
[=]
[~
:_1I

m 4

]
]
] L]
60 .
]
1) 5 10 15 20
x_date

Figure 5: Linear Regression Model
For visualization of the resultsin abetter way, the following lines of codeis used
mp.scatter(x_date, y_corns, color = 'blue’)
mp.plot(x_date, Ir2.predict(py.fit_transform(x_date)), color = 'red’)
mp.title('Polynomial Regression’)
mp.xlabel ('x_date)
mp.ylabel('y_corns)
mp.show()

#Output (See figure 6 for polynomial regression model)

Palynomial Regression

Y COMS
&

1 5 10 15 20
x_date

Figure 6: Polynomia Regression Modd

38

From figure 5 and figure 6, it is clear that the polynomial regression model is best suited for
an approximation when there is a non-linear relationship among variables.

2.7 SELF-CHECK QUESTIONS

i. Graphically draw the linear regression. Find out the R? value and p-value for the
following data.

Xinput_data | Yinput_data
2 18
4 16
6 20
8 24
10 22
12 25
14 27

ii. Find out the regression equation of Yinput_data on Xinput_data and also estimate
Yinput_data when Xinput_data=14 for the following data:

Xinput_data | Yinput_data
4 16
8 31
12 46
16 63
20 78
24 0
28 100

iii. Differentiate null hypothesis and alternate hypothesis with an example.

iv. What is the use of independent variables while calculating R? value and adjusted R?
vaue?

v. Choose the correct option from the following choices that is not an assumption of
linear regression
a) Linear relationship
b) Variance should be constant
c) Multicollinearity
d) Residuals should be normally distributed

vi. Categorical predictors impact and continuous predictors impact of the
regression line.
a) Intercept, slope
b) Adjusted R?, intercept
c) p-value, intercept
d) Noneof these

vii. Isto predict the winner of acricket game, simple linear regression is sufficient? (True
or False)

39

viil. Choose the correct option that does not represent the simple linear regression
formula
a) Profit_output =a input * Sales
b) Profit =a input * Sales+ b_constant
c) Profit=a input* Sales+ b_input * Cost
d) None of these

iX. A simplelinear regressor is created by the class for coding in python.

X. Choose the correct option from the following that does not represent multiple
regression formula
a) Profit=a input* Sales+ b_input * Cost + ¢_constant
b) Profit =a input* Sales+ b_input * Cost + c_input * RawMaterial
c) Profit=a input* Sales+ b _input * Cost + c_input * RawMaterial + d_constant
d) Profit=a input* Saes+b input * Cost * 2

Xi. Is the class that is used to create the linear regressor is same for multiple linear
regressors in Python coding? Tell the answer is True or False and also mention the
class name.

Xii. Linear regression belongs to supervised machine learning or not? Also, mention the
linear regression equation with a detailed explanation of each parameter used in the
regression eguation.

Xiil. Select the best option from the following that shows the impact of outliers on
the linear regression.

a) Itissensitivetowardsoutliers
b) Itisinsensitive towards outliers
c) Difficult to say

d) Noneof these

Xiv. Look at the scenario, a linear regression model is underfitting the data and
choose the best option that fitsinto that scenario
a) Removal of someindependent variables
b) Addition of some independent variables
¢) Introduce polynomial degree variablesin the regression model
d) It can be any one of the above cases

xv. Create alinear regression model using python code for the below-mentioned data

Xinput_data | YOutput_data | Xinput_data | YOutput_data | Xinput_data | YOutput_data

23 0 40 167 24 0
30 135 33 140 K%} 120

6 26 9 38 5 30

18 70 14 67 8 29

15 62 17 70 35 145

12 50 10 44 37 139
21 84 20 80 31 156
32 126 29 120 39 118

11 44 28 118 40 160

40

16 | 61 | 19 | 70 2 | 168

2.8 SUMMARY

After completing this module thoroughly, students will be able to do python code for
different regression techniques like linear, multiple, or polynomial regression. Students are
aware of the assumptions that are used for model development using regression. Students will
know which different classes will be used for different types of regressors. They can do a
comparison between different types of regression and they can do hypothesis testing.
Students are incul cated with visualization python code such that they can visualize the data to
improve the model relevancy. Students will know key parameters that are used to know for
the model relevancy like R-sguared, Adjusted R-squared, p-value, etc. They can do
hypothesis testing by themselves and can decide after evaluating the parameters of regression
models. They can understand whether the explanatory variable should be added to the model
or it should be dropped from the model. How many explanatory variables can be added that
explains the response variable sufficiently? Students can also check the overall significance
of the model by looking at the F-statistic too. This module has inculcated the python coding
skills that are required for working on regression problems and regression applications. They
can also handle real-time problems.

29 UNIT END QUESTIONS

i. IsF-datistic is used to know the overall significance of the model. If yes, explain its
suitability in knowing the overall model significance.
ii. Write the number of steps using statsmodels.api, when you want regression straight
line fit through data points.
iii. What do you mean by heteroscedastic in linear regression? When this condition is
available can you run your model using simple linear regression?
iv. Compare heteroscedastic with homoscedastic in linear regresson with suitable
examples.
v. Mention in detail when you want to reect the Null hypothesis and accept the Null
hypothesis, the role of the p-value.
vi. As linear regression has an assumption that a linear relationship exists between
explanatory variables and a single response variable. What is the meaning of this
assumption? Choose the correct and best option from the following given choices
a) All the explanatory variables when combined can’t calculate the response
variable.

b) All the explanatory variables when combined can calculate the response variable.

¢) All response variables when combined linearly then they can predict explanatory
variables.

d) All explanatory variables when summed together then they can calculate the
explanatory variable.

vii. The two models have been mentioned below with their R-squared value on the
training set as well as testing set. Both models have worked on the same data set and
the second model has more root mean squared error than the first model.

41

viii.

Xi.

Xii.

Xiii.

R-sguared values for the first model on the training set and testing set are 0.90 and
0.58 respectively.

R-squared values for the second model on the training set and testing set are 0.76 and
0.73 respectively.

Which of the above-mentioned models is the better one?

Let suppose if one of the featured independent variables (Ind_Var) iswell explained
by the other independent variables, this means Ind_Var matches has

a) HighVIFvaue

b) High p-vaue

c) Low p-value

d) Low VIFvaue

Write the applications of linear regression with suitable examples.

How you can handle the problem of overfitting and underfitting the datain the linear
regression model?

What do you understand by VIF and explainin detail how it isauseful parameter to
get the information for variables.

Create alinear regression model using python code for the bel ow-mentioned data

Xinput_data | YOutput_data
2 10
4 18
6 24
8 32
10 35
12 42
14 42
16 48
18 45

20 50
22 44
24 48
26 39
28 42

Create amultiple regression model using python code for the bel ow-mentioned data.
Also, tell the model isfit or not.

X1 X2 X3 Y
2 217 35 5600
2 212 22 6588
4 456 45 4567
5 544 57 5690
3 344 35 3543

42

1 89 13 1876
6 689 66 6687
6 645 62 6569
4 465 49 4876
4 468 41 4359
8 856 82 8198
8 790 84 8235
8 787 86 8165
9 999 A 9999
9 912 92 9991
9 915 A 9989
9 949 97 9888
4 498 52 4900
5 512 55 5000
6 600 67 6543
6 639 69 6545

xiv. Let’s suppose for the goodness of fit in the linear regression problem, you are
considering the R-squared measure. Then, suddenly you add a new feature in the
linear regression model and the whole model is trained again. Then, choose the best
option from the following given choices.

a) If by adding this independent variable in the model, the R-squared value increases
then this added variable is significant.

b) If by adding thisindependent variable in the model, the R-squared value decreases
then this added variable is not significant.

¢) It can not be said by just considering the R-squared value whether the independent
variable that you are adding in the linear regression model will have importance or
not.

d) None of the above-mentioned choices

Xv. List down the application of regression in detail. Also, mention the parameters that
impact regression model relevancy. Every parameter must be elaborated.

xvi. Which library of python is used for dividing the datasets into training part and testing
part. Make a python code for this concept.

REFERENCES

[1] https./iww.geeksforgeeks.org/ml-linear-regression/

[2] https://www.analyticsvidhya.com/blog/2016/07/deeper-regression-analysi s-assumptions-
plots-solutions/

[3] https.//www.kdnuggets.com/2019/03/beginners-guide-linear-regression-python-scikit-
learn.html

43

http://www.geeksforgeeks.org/ml-linear-regression/
http://www.analyticsvidhya.com/blog/2016/07/deeper-regression-analysis-assumptions-
http://www.kdnuggets.com/2019/03/beginners-guide-linear-regression-python-scikit-

[4] _https://medium.com/machine-learning-with-python/multiple-linear-regression-
implementation-in-python-2de9b303fcOc

[5] __https.//mww.geeksforgeeks.org/ordinary-least-squares-ols-using-statsmodel ¢/
[6] ___https.//mww.geeksforgeeks.org/python-implementati on-of-polynomia -regression/
[7] https.//www.w3schools.com/python/python_ml_polynomia_regression.asp

44

http://www.geeksforgeeks.org/ordinary-least-squares-ols-using-statsmodels/
http://www.geeksforgeeks.org/python-implementation-of-polynomial-regression/
http://www.w3schools.com/python/python_ml_polynomial_regression.asp

MACHINE LEARNING

UNIT I11: CLASSIFICATION

STRUCTURE

3.0 Objectives

3.1 Introduction

3.2 Logisticregression

3.3 K-Nearest neighbours

3.4 Support vector machine

3.5 Naive bayes

3.6 Decision tree classification
3.7 Random forest classification
3.8 Self-check questions

3.9 Summary

3.10 Unit-end questions

45

3.0 OBJECTIVES

» Understand various classification and regression algorithms.
» Understand the working and implementation of classification algorithms.
» Learn the pros and cons of machine learning classification algorithms.

3.1 UNIT INTRODUCTION

This module targets various classification algorithms along with their working, applications,
advantages, disadvantages and implementation in python. This module also covers the real-
time examples related to these classification algorithms. The module targets graduate students
who are eager to learn and implement various machine learning classification models. The
classification algorithms focus to classify the dataset based on many different parameters like
its class, group, features, attributes, etc. The main am of the module is to give a basic
understanding of these classification algorithms along with their implementation in a python
programming language.

32_LOGISTIC REGRESSION

This dsatistical analysis technique is commonly utilised in prognostic analytics and
development, as well as machine learning applications. Using a logistic regression equation
to estimate probabilities, is employed in analytical software to comprehend the link between
one or more independent factors and the dependent variable. This form of analysis can assist
you in predicting the chances of an occurrence or a decision occurring. For example, a person
wants to know the possibility of a user visiting the company website. So, with the help of
Logistic regression, a person can able to recognize the behaviour of a user like the number of
times the user visits the website, which product a user look into, from which site a user is
coming to the company’s website and many more. The logistic model assists the person to
decide that what type of users are accessing their website and as a result better can be taken
for promotion of company and website [1].

The logistic regression model is used to forecast the probability of a specific event, such as
pass/fail, up/down, dead/alive, ill/heathy, fresh/stale. A logistic function is used by logistic
regression to present a binary dependent variable in its most primary form, while there are
many more complicated extensions available. A binary logistic model mathematically
contains two dependent variables with two possible values like win/loss, these dependent
variables represent by two different indicators which are known as labelling like “1” and “0”,
where “1” stands for the win and “0” stands for loss. By computing the likelihood of each
element of the set, logistic regression is used to classify elements of a set into two categories
(binary classification) [1].

a. Importanceof Logistic regression:

Predictive models created using the logistic regression method can have a favourable impact
on any company or organisation. Because these models aid in the understanding of linkages
and the prediction of consequences, one can use them to make better decisions. For example,
arestaurant owner can able to decide the probability of customers visiting on a particular day
depending on the previous pattern. With this, the restaurant owner can analyse and decide the

46

number of dishes they can prepare accordingly without any failure. Along with this, the
logistic regression analysis method can be used in medicine to estimate the likelihood of
sickness or illness in a given population, allowing for the implementation of preventative
care. By monitoring buyer behaviour, businesses can identify trends that lead to improved
employee retention or produce more profitable products. This form of analysis is used in the
corporate world by data scientists, whose purpose is to evaluate and comprehend complicated
digital data[2].

b. Typesof Logistic regression:
Thethreetypes of logistic regression are:

a Binomial logistic regression: In this type of logistic regression the variable target can
have two possible values of indicators like “healthy” or “diseased”, “1” or “0”, “Victory” or
“Loss”.

b. Multinomial logistic regression: This type of logistic regression deals with three or more
unordered target variables like “Disease X” vs “Disease Y’ vs “Disease Z”.

c. Ordinal logistic regression: It works with ordered categories of target variables. For

2 ¢

example, a class grade can be categorized as “low grade”, “medium grade” and “high grade”.
c. Prediction using logisticregression:

To make predictions with alogistic regression model, it's as simple as inserting numbers into
the equation and computing the outcome. For example, let’s assume that a model has been
developed that will predict whether a person is a boy or girl based on their height

(imaginary).
Assuming the height of a person as 160cm.

The learnable coefficients are c0=-100 and ¢1=0.6. Using the following equation we can able
to get the resultant value which will predict that whether the person isaboy or agirl.

S(x) =e” (c0+cl*x) / (1 + e” (cO0+cl*x)), where x is the given height of a person and S(x) is
the resultant predicted value.

So, by applying the above formula using the given values we will get,
S(x) = e (-100+0.6*160) / (1 + e (-100 + 0.6* 160))

S(x) = 0.01831/ 1.01831

S(x) = 0.01798

We can apply the probabilities directly in practice. To have a clear answer, the resultant
values have been reduced to binary values.

O0if S(male) <05

47

1if S(female) > 0.5

So, in this case, as the resultant value is less than 0.5 it gets compressed to O which predictsiit
as a “male”.

d. Applications of L ogistic regression:

In avariety of domains, including machine learning, medical domains, and the socia science
field, logistic regression is applied. Along with this many medical measures that are used to
determine a patient's severity were developed using logistic regression. Based on the patient's
observed features, logistic regression can be used to forecast the likelihood of developing a
disease. Logistic regression is also applied in engineering for the prediction of a particular
system to be a success or failure, in marketing it is used as a customer behaviour prediction
and in the discipline of natural language processing this approach is used for sequential data
regression. Some of the real-time applications of logistic regression have been shown below

[3].

a Scoring of credit in finance
b. Text editing

C. Medical database

d. Hotel booking system

e Gaming

e. Implementation of L ogistic regression with python:

To implement Logistic regression with python, there are four basic steps to follow which are
stated below.

3.2.5.1 Import Packages, functionsand Classes

To use some of the pre-defined functions, we need to import some of the packages and
classes.

Code:

import matplotlib.pyplot aspl_t

import numpy asnp_o

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report, confusion_matrix
3.2.5.2 Fetching Data

For the implementation of the approach, one needs to have some data on which the code will
process, so in this case, we have created two arrays for input and output.

Code:
a=np_o.arange(9).reshape(-1, 1)

48

b=np oarray([0,0,0,1,1,1,1,1,1])
3.2.5.3 Development and Training of the Modéd

You can design and define your categorization model once you have the input and output
ready. You'll use an instance of the class LogisticRegression to represent it.

Code:
mode = LogisticRegression(solver='liblinear', random_state=0)

After development of model, the next part is to train the model, which is done with the help
of .fit() function.

Code:
mode.fit(a, b)
3.2.5.4 Modd Evaluation

After development and successful training of the defined model, the next and last step isto
evaluate and test the model based on resultant predictions with the help of the
.predict_probe() and .predict() function.

Code:
mode.predict_proba(a)
mode.predict(a)

33 K-NEAREST NEIGHBOURS

K-Nearest neighbours (K-NN) is a classification technique based on the non-parametric
method developed by Joseph Hodges and Evelyn fix. This technique is also used regression
in which the k closest training examples in a data collection are used as input and the output
is dependent on whether the K-NN technique is applied for regression or classification. Class
membership is the result of K-NN classification. An object is assorted by the utmost vote of
its neighbours, with the object alocated to the most familiar class with its k closest
neighbours. While in K-NN regression, the output is the average of the values of k nearest
neighbours. In K-NN classification, the function is only estimated sectionally, and all
computation is postponed until the function is assessed. As this process depends on
classification distance, normalising the training data can greatly enhance the system's
accuracy if the features represent various physical units. A productive approach for both
classification and regression is to designate weights to the support of the neighbours so that
the nearer neighbours give more to the mean than the remoter neighbours. Along with this,
the neighbours are selected from a group of objects from which the classis known [4].

Some of the properties of K-NN are discussed below.

49

a. The K-NN method is one of the most fundamental machine learning algorithms. It
is based on the supervised learning technique.

b. The K-NN technique presumes that fresh data and current cases are exact and
assigns the new case to the category that is closest to the existing categories.

c. K-NN stocks all the accessible data and performs classification based on likeness.

d. K-NN isdesigned for both regression and classification, but in most cases, K-NN
isapplied for the classification of the dataset.

e. K-NN never takes any pre-assumed data.

f. The KNN method merely saves the information during the training phase, and
when new data is received, it is placed in a category that is aike to the newly
developed data.

Example of K-NN:

Suppose we have an image of a person that seems similar to amale or afemale, but we don't
know whether it's a male or female. We can utilise the KNN method for this recognition
because it is based on a measure of similarity. Our KNN model will compare the data set to
the male and female pictures and categorise it as amale or afemale based on the most similar
attributes.

3.3.1 Need of K-NN:

One of the most extensively used learning algorithms and one of the fundamental
classification methods is the KNN approach. Its purpose and necessity is to use a database of
data points separated into several groups to predict the categorization of a new sample data
point [4].

3.3.2Working of K-NN:

The working of K-NN can be easily understood with the help of a simple example. Figure 1
shows the distribution of yellow circles (Y C), green triangles (GT) and a pink diamond (PD).

Fig 1. Distribution of YC, PD and GT
Using a K-NN approach we need to find the class of PD which can belong to either YC or
GT. The "K" in the KNN a gorithm stands for the nearest neighbour from whom we want to
take a vote. So, in this case, we take the value of K as 4, hence a circle with PD will be made
covering the nearest four data points as shown in figure 2.

50

Fig 2. Class of PD using K-NN
The four locations closest to PD are all YC. Asaresult, we can confidently assert that the PD
goes to the Y C classification. The winner was obvious in this case, as YC won al four votes
from the nearby neighbourhoods. The parameter K must be carefully chosen in this technique

[3].

3.3.3 Selecting value of K in K-NN

The following are some of the points which one should keep in mind while selecting the

value of K.

a. Thereisno one-size-fits-all method for determining theideal value for "K," so we'll have
to experiment with avariety of options to find the best one.

b. K=1or K=2isan extremely low value for K that might be noisy and cause outlier effects
in the mode!.

c. Largevauesfor K are desirable, but they may cause problems.

3.34 Advantages

Thefollowing are some of the advantages of K-NN.

a. Inthe case of alarge amount of training data, K-NN proved to be more effective and
efficient.

b. Itismorereliablein the case of the noisy dataset.

c. Theimplementation of K-NN isvery smple.

3.3.5 Disadvantages

Some of the disadvantages of K-NN has been mentioned below.

a. Thevaue of K must constantly be determined, which might be challenging at times.

b. The calculation cost is high since the distance between the data points for all of the
training samples must be calculated.

3.3.6 Applicationsof K-NN

K-NN has been applied in avariety of fields like,
a Finance

Face recognition

Recommendation system for websites

Text analytics

Security systems.

©® oo

51

3.3.7 Implementation of K-NN:

In the implementation of k-NN, the following steps have been executed.
a. Using scikit-learn package classifier and dataset has been imported.
Development of feature variable.

Dividing of datainto training and testing.

Creation of K-NN model with the help of neighbour values.
Training of the model using dataset.

. Prediction of the values

Code:

Import classifier and dataset

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.datasets import load iris

® oo

—h

Dataset
i_data=load iris()

Developing feature variables
a=i_datadata
b =i_datatarget

dividing datainto training and testing
atr,ate b tr,b te=train_test split(a, b, test size= 0.3 random_state=50)

k = KNeighborsClassifier(n_neighbors=6)
knn.fit(a_tr, b_tr)

Predict on dataset which model has not seen before
print(k.predict(a _te))

34 SUPPORT VECTOR MACHINE (SVM)

Among various supervised learning methods, SVM is one of the well-known techniques that
helps for both classification and regression problems. The SVM agorithm's purpose is to find
the optimum line for categorising n-dimensional space into groups so that in the future,
further data points can be easily placed in the correct group The idea choice boundary is
known as a hyperplane. The hyperplane has been created by selecting the extreme points
which are known support vectors and the technique is known as a support vector machine [6].

3.4.1Working of SYM

An SVM model is a representation of separate classes in a hyperplane in multi-dimensiona
space. To minimise the inaccuracy, SVM will iteratively create the hyperplane. The goal of

52

SVM is to divide datasets into classes so that a maximum marginal hyperplane can be

discovered [6].
Margin
=1 R
Y-axis N '_---’. .

e
@& ~. @@
am Tl \ Class 2
Class 1 ” e
Support
X.axis

Fig 3. SVM concepts
Some of the important concepts of SVM are as follows:

a. Support vectors. The data points closest to the hyperplane are called support vectors. A
dividing line will be drawn between these data points.

b. Figure 3 shows a hyperplane. It is a decision plane or space in which severa objects of
distinct classes are separated.

c. Margin: It's the distance between two lines on a data point with distinct classifications on a
closet. It is possible to caculate the perpendicular distance between the line and the
support vectors. A large margin is considered a good margin, whereas a tiny margin is
considered a bad margin.

3.4.2 Implementation of SVM in Python

The SVM algorithm utilizes kernels to transform a low-dimensional input space into a
higher-dimensional data space. This is known as the kernel trick. The kernel makes SVM
more powerful, flexible, and accurate by adding more dimensions to non-separabl e problems.

Code:

import numpy as n_pl

import matplotlib.pyplot as p_lt

from sklearnimport svm, datasets

import data

ir = datasets.load_iris()

X _data=ir.datd[:, :2] # Taking only two features.
Y _data=ir.target

Developing an instance of SVM for fitting out the data.
C param=1.0
S vc=svm.SVC(kernel='linear', C=1,gamma=0).fit(X_data, Y_data)

Developing mesh for plotting

53

X_mi, X_ma=X_datd[:, 0].min() - 1, X_data[:, 0].max() + 1
Y_mi, Y_ma=X_datq[:, 1].min() - 1, X_datd[:, 1].max() + 1
h=(X_ma/X_mi)/100

Xg,yg =n_pl.meshgrid(n_pl.arange(X_mi, X_ma, h),
n_pl.arange(Y_mi, Y_ma, h))

p_lt.subplot(1, 1, 1)

Zp=S vc.predict(n_pl.c_[xg.ravel(), yg.ravel()])

Zp = Zp.reshape(xg.shape)

p_lt.contourf(xg, yg, Z, cmap=plt.cm.Paired, apha=0.8)
p_lt.scatter(X_datd[:, 0], X_datd[:, 1], c=y, cmap=p_lt.cm.Paired)
p_lt.xlabel(‘Sepal length')

p_lt.ylabel (‘Sepa width')

p_lt.xlim(xg.min(), xg.max())

p_lt.title('SVC with linear kernel")

p_lt.show()

3.4.3 Advantages

Thefollowing are the advantages of SVM.

a. When thereisaclear separating line, it works well.

b. Itisvery efficient in the case of high dimensional spaces.

c. This approach works effectively when the number of dimensions is higher than the
sample number.

d. Because the decision function only employs a subset of training data, it is memory
efficient.

3.4.4 Disadvantages
Some of the disadvantages of SVM are mentioned as follows.

a. It doesnot work well when we have a huge data collection because the required training
lapseislonger.

b. Inthe case of overlapping of thetarget class and additional noisein adataset, it performs
poorly.

c. Probability estimates are generated via a time-consuming five-fold cross-validation
method that SVM does not give directly.

35 NAIVE BAYES

It is a classification technique that assumes that a particular feature in a class does not
correlate with the presence of other features in that class. As a result, they are based on
Bayes’ Theorem. For example, if a vegetable is red and round, with a diameter of 2 inches it
is known as a tomato. Even though these features are dependent on one another or the
presence of other characteristics, they are still important, each of them contributes to the
possibility that this vegetable is a tomato, and this is a reason we named it 'naive’ [7].

54

The Naive Bayes model is easy to build and works well with large data sets. Because of its
simplicity, Naive Bayes is known to outperform even the most powerful classification
algorithms.

3.5.1 Working of Naive Bayes Algorithm

The working of the Naive Bayes algorithm can be understood with the help of an example.
We need to classify that whether an athlete is qualified for the game or not based on he is
healthy or not, so for that, we need to follow some steps[8].

Step 1: Develop afrequency table based on the dataset.

Step 2: A likelihood table will be created by finding the unhealthy probability as 0.30 and the
probability of qualified players as 0.60.

Table 1. Dataset table

Player status Qualified
Healthy Yes
Unhealthy No
Healthy Yes
Healthy Yes
Unhesdlthy No
Healthy Yes
Healthy Yes
Unhesdlthy No
Unhesdlthy No
Healthy Yes

Table 2. Frequency Table

Frequency Table
Player status | No | Yes
Hedthy 0 6

Unheathy 4 0
Grand total 4 6

55

Table 3. Likelihood table

Likelihood table

Player status | No Yes

Hedlthy 0 6 =6/10 0.60
Unhedlthy 4 0 =4/10 0.40
All 4 6

Probability 4/10=0.40 | 6/10=0.60

So, by referring to Table 3., we can conclude that player with healthy status has a higher
probability to get qualified for the game. Based on attributes that use the same approach naive
Bayes predict the likelihood of various classes. This method is commonly used for the
classification of text and challengesinvolving several classes.

3.5.2 Advantages of Naive Bayes
a. Predicting the class of test data sets is fast and easy. It also does well in multiclass
prediction

b. When the assumption of independence is met, the Naive Bayes classifier outperforms other
models such as logistic regression. This also cuts down on the amount of data needed for
training.

c. Comparatively to numerical variables, it performs well when the input variables are
categorical.

3.5.3 Disadvantages of Naive Bayes

a. If the test data set contains the categorical variable whose category was not included in the
training data set, a probability of O (zero) will be assigned to the model and prediction will
not be generated. Thisis known as"Zero Frequency".

b. Naive Bayesis alousy estimator, as aresult, the probability output should be handled with
caution.

3.5.4 Applications of Naive Bayes algorithm
a. Naive Bayesis aclassifier that learns quickly and eagerly. As aresult, real-time forecasting
could be possible.

b. This method is known for its ability to predict a wide range of classes. This predictor may
predict the chance of many target variable classes, making it a multi-class predictor.

56

c. In collaboration with Nave Bayes Classifiers, Collaborative Filtering creates
Recommendation Systems that helpsin predicting whether a user will be interested in a given
resource or not.

3.6 DECISION TREE CLASSIFICATION

The decision tree technique is widely used for the classification of classes and making
predictions. It is a flowchart like structure with every internal node present with an attribute
test, the result of the test represents by branch and the class label represents every leaf node

9.

There are three parts of the decision tree which are mentioned as follows and also shown in
figure4.:

a. Node: Node consists of avale of aparticular attribute.
b. Edge: Itisaconnecting link that connects the two nodes.
c. Leaf node: It istheterminal or end node which predicts the outcome.

Is a parson is haeaithy or

nok?
Bl = 18.5

Yiem ‘l. .L Mo
[e p—
-\.:|I:I-||'I-rll1l:_:|. f_:-::l:n P PRt

rraal it ritics

P ‘L ‘l"T'E'E Nﬂrlj e
Heaalthy Linhasithy Healthy Uinhaealthy

Fig 4. Decision tree

Classification trees and regression trees are two types of decision trees which are discussed as
follows [10].

3.6.1 Classification Trees

It is alogica representation of a decision tree that gives the class of an object. This is an
iterative method that involves separating the data into partitions and then further splitting it
up on each branch.

3.6.2 Regression Trees
Regression trees are the type of decision trees with target variables taking continuous values.
For example price of ashare of acompany or the length of a customer stay in a hotel.

3.6.3 Divideand Conquer Algorithm

Recursive partitioning is used to build decision trees due to which is also known as the divide
and conquer algorithm. Divide and conguer is an approach to data analysis where data is
divided into subgroups, which are repeatedly subdivided into smaller subgroups, and so on
until the algorithm determines that the data within the subgroups is homogeneous or another

57

stopping criterion is satisfied. There are four basic steps of the divide and conquer algorithm
which is discussed as follows [10].

a. Select aroot node and create abranch of al the possible outcomes.

b. Subdivide instances into groups. Each branch extending from the node has its own.

c. For each branch, repeat the process recursively, utilising just the instances that makeit to
the branch.

d. If al of abranch's instances share the same class, the recursion should be stopped.

3.6.4 Advantages of Decision Trees

a. Economical to implement

b. Unknown records are classified extremely quickly.

c. For many simple data sets, accuracy is equivalent to that of other classification algorithms.

3.6.5 Disadvantages of Decision Trees

a. Very easy to overfit.

b. Splits on features with a large number of levels are frequently favoured by decision tree
models.

C. Largetrees can be hard to understand, and their decisions might be surprising.

3.6.6 Applications of Decision Trees

a. Finance analysis

b. Medical diagnosis and analysis

c. Feature detection in biomedical engineering
d. particle recognition in physics

3.6.7 Python Codefor Decision Tree

Thebelow isthe step by step python implementation of the decision tree:
Step 1: Importing al theimportant libraries.

import pandas as p_lt

import numpy as n_plt

import matplotlib.pyplot asp_It

import seaborn asn_s

%matplotlib inline#for encoding

from sklearn.preprocessing import Label Encoder#for train test splitting
from sklearn.model_selection import train_test_split#for decision tree object
from sklearn.tree import DecisionTreeClassifier#for checking testing results
from sklearn.metricsimport classification_report, confusion_matrix#for visualizing tree
from sklearn.tree import plot_tree

Step 2: Loading of the dataset.
ds=n_sload dataset('iris)
ds.head()

Step 3. Pre-processing of the dataset.

58

t = d9['species]

dsl = ds.copy()

dsl = dsl.drop('species, axis =1)
F=dsl

#label encoding

| = LabelEncoder()

t =1.fit_transform(t)

t

o=t

Step 4: Dividing the data into training and testing

f tr,f_te g_tr,g_te=tran_test_split(f, g, test_size=0.3, random_state = 42)print("Training
split input- ", X_train.shape)

print("Testing divideinput- ", f_te.shape)

Step 5: Testing the model:
D_treefit(f_train,g_train)print('Decision Tree Classifier developed’)
g _pr=D_treepredict(f_test)

print("Classification- ", classification_report(g_test,g _pr))

3.7 Random Forest Classification

The idea behind random forests is to build a multitude of decision trees during training time
to perform classification and regression. It Is majorly used for classification. Aswe al know,
a forest is made up of trees, and more trees equal a hedthier forest. The random forest
technique, on the other hand, creates decision trees from data samples, extracts predictions
from each, and then votes on the best alternative [11].

3.7.1 Working of Random Forest Classification

The initial stage in Random Forest is to join N decision trees, followed by predicting the
outcomes of each tree formed in the first phase [12]. The working flow of random forest is
explained using the following steps and figure 5.

Step 1: N data points selected from the training set.

Step 2: Creating decision trees that are linked to a set of N data points.
Step 3: Choosing the K decision trees which should be devel oped.
Step 4: Perform steps 1 and 2 again.

Step 5: Find each decision tree's forecasts for new data points, assign the new data points to
the category with the most votes, and forecast the outcome.

59

»/ Training \ { Traawing / Training

g | l | dotaser2 | | dotaset 3 |
Training dmar | [domez| g @ @ [wusd |
.-_"—. ."—'. - -
“Dacaion ™, “Decteen ™ “Decision ™,
’ ree ’ ree 2 J o o ° ‘ Yeo)
i y » <l o A-\
Tasting gLl L |
data R S S . |
l Average ‘
- —1— -
A4

Prediction
results

Fig 5. Random forest classification

3.7.2 Presumptions before Working With Random For est
As numerous trees combine for forecasting the class of dataset in a random forest, some
outcomes anticipate with the decision trees correctly while others may not. But if all the trees
collectively get combined will be resulted in an accurate prediction [11]. Therefore two
assumptions for correct random forest classifier are shown below:
a. To get the correct and accurate outcome feature variable of the dataset mast must have

actual values.
b. Low correlation must be there for each tree’s forecast.

3.7.3 Advantages of the Random For est

a. It can perform both regression and classification tasks.

b. Capable of controlling high dimensional large datasets

c. Stop overfitting problems and increase the accuracy of the mode.

3.7.4 Disadvantages of the Random Forest
a. Contains complex calculations
b. In some cases, it results in sub-optimal decision trees.

3.7.5 Applications of the Random For est
Some of the applications of random forest are mentioned below:

Fraud detection in banking

Disease prediction in medical fields.
Share market prediction

Sentiment analysis

Product suggestion on an e-commerce Site.

® oo o

3.7.6 Implementation of Random Forest in Python
Implementation of random forest contains basic steps which are discussed below with python
code.

Step 1: Pre-processing of data:
import libraries

60

import numpy asn

import matplotlib.pyplot asm

import pandas as p

#import datasets

d=p.read_csv('user_data.csv')

#Extraction of variables

xr=d.iloc[:, [2,3]].vaues

yr=d.iloc[:, 4] .vaues

dividing the dataset into training and testing.

from sklearn.model_selection import train_test_split
Xr_tr, xr_te, yr_tr, yr_te=train_test_split(xr, yr, test_size= 0.25, random_state=0)
#feature extractio

from sklearn.preprocessing import StandardScal er

s xr= StandardScaler()

Xr_tr=s xr.fit_transform(xr_tr)

Xr_te= s xr.transform(xr_te)

Step 2: Fitting the algorithm to training dataset:

from sklearn.ensemble import RandomForestClassifier
classifier= RandomForestClassifier(esti= 10, crit="entropy")
classifier.fit(xr_tr, yr_tr)

Step 3: Predicting the result using testing dataset:
yr_pred= classifier.predict(xr_te)

Step 4: Creation of Confusion matrix:
from sklearn.metricsimport confusion_matrix
c= confusion_matrix(yr_te, yr_pred)

3.8 SELF-CHECK QUESTIONS

Que 1. Canwe say that Logistic regression is atype of supervised machine learning
algorithm?

A.True
B. False

Que2: Themain and only purpose of logistic regression is regression?
A.True
B. Fase

Que 3: To best fit the data, which approach should be applied in logistic regression?

A. Maximum likelihood
B. Jaccard distance

61

C. Least Square error
D. None of the above

Que 4: Which of the following assessment criteria cannot be used to compare the output of
logistic regression with the target?

A. Accuracy

B. AUR-ROC

C. Mean square error
D. None of these

Que 5: The assumption for logistic regression is?

A.The logit of the result variable has a linear connection with the continuous predictor
factors.
B. Continuous predictor variables and the outcome variable have alinear connection.

C. A linear relationship between observations.
D. None of the above

Que 6: The k-NN technique does more computing during the test phase than during the
training phase.

A.True
B. Fase

Que 7: In k-NN, which of the following distance metrics can't be used?

A. Jaccard

B. Tanimoto

C. Manhattan

D. All of the above

Que 8: Which of the following statements concerning the k-NN algorithm is correct?

A.It'saclassification tool.
B. It’s aregression tool
C. It can be useful for both classification and regression

Que 9: Which of the following statements concerning the k-NN algorithm is correct?

A. If al of the data has the same scale, k-NN performs substantially better.

B. k-NN works effectively when the number of input variables (p) issmall, but it struggles
when the number of inputsis large.

C. k-NN does not presume the functional form of the problem to be solved.

D. All of the above

Que 10: What should be the value of k that will reduce the cross-validation accuracy while
leaving out one?

62

A.5

B.3

C. Both have equa accuracy
D. None of these

Que11: In terms of the SVM, what do you mean by generalisation error?

A. Thedistance between the support vectors and the hyperplane

B. TheSVM'sability to predict outcomes for data that hasn't been observed.
C. The maximum amount of error that an SVM can tolerate.

D. Noneof these

Que 12: Which of the following is true when the C parameter is set to infinite?

A. If one exists, the best hyperplane is the one that totally isolates the data.
B. Thedatawill be separated by the soft-margin classifier.

C.BothA andB

D. None of these

Que 13. O(n2) isthe simplest temporal complexity for training an SVM. What dataset sizes
aren't best suited for SVMs, based on this fact?

A. Small dataset
B. Large dataset
C. Medium dataset
D. None of these

Que 14: When some features are absent, how can we conduct Bayesian classification?

A. Themissing values are assumed to be the mean of all values.

B. We overlook the features that aren't present.

C. Over the missing features, we combine the posterior probability.
D. None of the above

Que 15: Which of the following statements about a Decision Treeis TRUE?

A. The classification issue statement is the only one for which a decision tree is appropriate.
B. Aswe progress along a decision tree, the entropy of each node reduces.

C. Only numeric and continuous attributes can be used in a decision tree.

D. Entropy influences purity in adecision tree.

Que 16: When building a decision tree, how do you pick the proper node?

A. An entropy-rich attribute

B. A property with high entropy and information gain.

C. An attribute with the least amount of information gained.
D. An attribute with the greatest amount of knowledge gain.

63

Que 17: When it comes to correlation and covariance, which of the following statements is
FALSE?

A. A zero correlation does not always imply that the variables are independent.
B. Thevalues of correlation and covariance are the same.

C. Thesign of covariance and correlation is aways the same.

D. The standardised version of Covarianceis Corrédation.

Que 18: When it comes to Deep Learning and Machine Learning agorithms, which of the
following statementsis FALSE?

A. Deep Learning algorithms can handle alarge amount of data with ease.
B. Unstructured data is best suitable for Deep Learning agorithms.

C. Deep Learning agorithms need alot of computing power.

D. In both ML and DL systems, feature extraction must be done manually.

Que 19: Which of the following statements concerning the ensemble algorithms Random
Forest and Gradient Boosting are true?

A. For aclassification problem, both methods can be employed.

B. For regression tasks, both techniques can be used.

C. For regression, Random Forest is used, whereas, for classification, Gradient Boosting is
used.

D. BothA and B

Que 20: In arandom forest, how many decision trees are there?

A. severa singletrees, each based on arandom subset of the training data

B. A random forest isaset of decision trees that aren't connected in any way.
C. BothA andB

D. None of the above

3.9 SUMMARY

This module will help students to understand various machine learning classification
algorithms along with their real-time applications, pros and cons. Along with this working
and implementation of these classification agorithms has been discussed in detail. In every
section of the module, a basic introduction of the module followed by its working,
assumptions taken for the algorithm to work, its pros and cons, a rea-life application which
covers the areas or fields where that particular algorithm has been used, and at last step by
step implementation of the algorithms in a python programming language has been discussed
in detail. This module will assist the student to understand the basic concept of classification
in machine learning with the help of various machine learning classification algorithms.

64

3.10 UNIT END QUESTIONS

Que 1: What islogistic regression?

Que 2: Explain different types of Logistic regression?

Que 3: Explain Properties of K-Nearest Neighbour?

Que 4: Explain the assumption before working with random forest classification?
Que 5: Describe the advantages, disadvantages and applications of decision trees?
Que 6: Explain the working of the Support vector machine?

Que 7: Explain different parts of the decision tree with the help of an example?
Que 8: Explain different types of decision trees?

Que 9: Implement Decision tree classification with the help of python programming
language?

Que 10:Describe the working of Random forest classification and implement it in apython
programming language?

References

[1] https://towardsdatasci ence.com/logistic-regress on-detail ed-overview-46c4dad303bc
[2] https://en.wikipedia.org/wiki/Logistic_regression

[3] https://machinel earningmastery.convlogi stic-regressi on-for-machine-learning

[4] https.//www .javatpoint.com/k-nearest-nei ghbor-a gorithm-for-machine-learning

[5] https.//www.anal yticsvidhya.com/blog/2018/03/introducti on-k-nei ghbours-al gorithm-
clustering

[6] https.//www.anal yticsvidhya.com/blog/2017/09/understai ng-support-vector-machine-
example-code

[7] https.//iwww.anal yticsvidhya.com/blog/2017/09/nai ve-bayes-expl ained/
[8] https.//www.geeksforgeeks.org/naive-bayes-classifiers

[9] https.//www.geeksforgeeks.org/decision-treef/

[10] https.//mww.geeksforgeeks.org/decision-tree/

[11] https.//www.javatpoint.com/machine-learning-random-forest-algorithm

[12] https://medium.com/swlh/random-forest-classification-and-its-implementation-
d5d840dbead0

65

http://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
http://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-
http://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-
http://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/
http://www.geeksforgeeks.org/naive-bayes-classifiers
http://www.geeksforgeeks.org/decision-tree/
http://www.geeksforgeeks.org/decision-tree/
http://www.javatpoint.com/machine-learning-random-forest-algorithm

MACHINE LEARNING
UNIT IV: CLUSTERING

STRUCTURE

4.0 Objectives

4.1 Introduction to Classification

4.2 K-meansclustering

4.3 K-meansrandom initialization trap
4.4 Selecting the number of clusters
4.5 Hierarchical clustering

4.6 Self-check questions

4.7 Summary

4.8 Practicequestions

66

40 OBJECTIVES

e Understand various clustering algorithms.

e Understand the working and implementation of clustering a gorithms.

e Learn the pros and cons of machine learning clustering algorithms.

e Learn and understand the pre-requisite for the implementation of clustering agorithms.
e Students can able to code and run these algorithms on their respective datasets.

41 UNIT INTRODUCTION

This module covers a variety of clustering algorithms, including how they operate, what
they're used for, what they're good for, what they're bad for, and how to implement them in
the python programming language. This section aso includes real-world examples of
clustering algorithms in action. Along with this it also covers the detailed explanation of each
algorithm with stepwise diagrammatic representation which will help the reader to
understand the concept deeply and properly. A deep explanation has been given in the case of
the k-means cluster and hierarchical clustering concept with step-wise python code and their
respective clustering output. Dataset for implementation has been self-developed and
uploaded to understand the agorithm more clearly. Graduate students who want to
understand and use various machine learning classification models can benefit from this
programme. Clustering algorithms data sets or data points depend on a variety of factors such
as closeness or distance between data points. The module's main goa is to provide a
fundamental overview of various clustering techniques, as well as their implementation in

Python.
4.2 K-MEANS CLUSTERING

K-Means Clustering is an unsupervised learning method used in machine learning (ML) and
data science to handle clustering challenges. Its goa is to make k number of clusters using t
observations, and every observation belongs to the cluster with the nearest average which acts
as the cluster's prototype. In the k-means clustering agorithm, the variance within a cluster is
minimized, only the geometric median results in the smallest squared errors. It splits the
unlabelled dataset into various clusters. Already defined clusters are specified by k, that must
be produced during the process; if K=5, five clusters will be created, and if K=4, four clusters
will be created. It's an iterative method for dividing an unlabelled dataset into k clusters, with
each dataset belonging to a single group with identical characteristics or traits. In this way,
we can cluster the data into different types of bundles and find on our own without training
the type of groups in unlabelled datasets. This approach is based on centroid that is every
cluster hasits centroid. This technique's major purpose is to reduce the total distance between
data points and the clusters to which they belong [1].

The technique takes unlabelled data as input, separates it into a k clusters, and the procedure
will be repeated until no better clusters are found. In this agorithm, the value of k should be
dready fixed. The following are the tasks that are performed by the k-means clustering
algorithm.

a. Determinesthe optimal valuefor K centre points.

67

b. The k-centre that is closest to each data point is assigned to it. Data points that are
close to a given k-centre create a cluster.

The unsupervised k-means algorithm is connected to the k-nearest neighbour classifier, a
well-known supervised ML classification technique that is frequently confused with k-means
due to its name. Using the cluster centres generated by k-means, the 1-nearest neighbour
classifier is used to categorise incoming data into existing clusters. This is known as the
Rocchio algorithm or nearest centroid classifier [2].

4.2.1 History of k-means Clustering:

Following the idea of Steinhaus which came in 1956, James MacQueen used the name “k-
mean” in the year 1967. Stuart Lloyd from bell labs proposed a modulation technique of
pulse-code in 1957. Along with thisin 1965 W. Forgy proposed the same method which was
later published due to that reason the algorithm is known as the L1oyd-Forgy algorithm [3].

4.2.2 Working of k-means Clustering Algorithm

This technique's primary purpose isto lower the sum of distances between data points and the
clusters to which they belong; the working of k-means clustering involves the set of steps
which are explained as follows [1].

Step 1: Select the number of clusters by selecting the specific value of k.
Step 2: Select any point randomly which will act as a centroid or centre.

Step 3: Assign or select the data point nearest to the centroid which will result in the pre-
defined k-clusters.

Step 4: Placing the new centroids by cal culating the variance.

Step 5: Perform Step 3 again to get the new k-clusters which will result by reassigning the
nearest data pointsto the centroids.

Step 6: Perform Step 4 again in case of any reassignment or finish the process.
Step 7: The model is devel oped and ready.

The demonstration of k-means clustering has been shown in figure 1.

e - 20
fazs
.'. M LR .. et K oonany ... 4 L R °‘
AN ’ — A ’
) ° S) P)
»
LN - e
.f.
L LR J
o
Lk Lok

Fig 1. k-means clustering

Now let’s understand the above-mentioned step by step working with the help of an example
and graphical plots.

68

Considering that we have two different variables with the name d1 and d2. The x-y scatter or
graphical plot of these two variables has been shown in figure 2.

1. To recognise the dataset and place it into various clusters, well use the number k of
clusters, i.e,, K=2. That is, we will attempt to divide these datasets into two distinct
clusters.

Y.axis

X.axrs

Fig 2. Graphical plot of two variables
2. To form the cluster, we'll need to pick a random k points or centroid. These points could
be from the dataset or from anywhere else. As a result, we've chosen the two points below
as k points, even though they're not in our dataset as shown in figure 3.

Y-axis =3

X-axis

Fig 3. Graphical plots with k points

3. Now well assign each scatters plot data point to the nearest K-point or centroid. Well
figure it out using the arithmetic we've learned about calculating distances between two
spots. Asaresult, we'll draw aline connecting both centroids, as shown in figure 4.

Y-aXis -.

X -anis

Fig 4. The connecting line between centroids
4. Figure 4 shows that points on the line's |eft side are near to the f1 or green centroid,
Points on the right side of the line are close to the blue centroid. To make them easier
to see, we'll paint them green and blue, as seenin Figure 5.

69

® -
Y-axis Y
® e
il e ©
. @
® ‘e e
® .
o 1IN
X.axis

Fig 5. Reassigning colour to the data points
5. WE'l repeat the process by selecting a new centroid because we need to discover the
closest cluster. We'll compute the centre of gravity of these centroids to determine new
centroids, as shown in figure 6.

¥-axis L - ,.

e

e

¥oaxis

Fig 6. Selection of new centroid
6. Then, for each data point, we'll reassign it to the new centroid. We'll go through the same
steps as before to identify amedian line. Figure 7 depicts the median.

@ 0.
Y-axis Q
By e
n'e &
o o ®
[c]
o W
X.axis

Fig 7. Reassignment of new centroid
7. From figure 7 it has been clear that on the left side of the line one blue point is there
and three green points are on the right which will result in the assignment of new
centroids. Well return to step-4, which is determining new centroids or K-points, after
reassignment is complete, which will lead us to again follow al the steps again and
result in the result of the fully developed model with two fina clusters as shown in

figure 8.

70

4.2.3 Implementation of k-means clustering algorithm in python:
To implement the algorithm in the python programming language the following set of steps
has been followed.

Y-axis

Step 1: Creation of dataset

For asimple implementation, ademo dataset has been developed using a..csv file which was
later imported using python. For demonstration, the devel oped dataset has been shown in

[
@0
» (o]
(<] &
2
o]
® e
+*
X-axis

Fig 8. Fully developed model

Table 1.
Table 1. Employee dataset
Index | EmpID Gender | Age | Salary (Inkrupees) | Work score
1 1 Male 20 25 10
2 2 Female 33 40 5
3 3 Male 21 25 6
4 4 Male 40 40 3
5 5 Female 28 25 7
6 6 Female 19 15 6
7 7 Male 26 25 9
8 8 Male 22 25 4
9 9 Male 35 40 9
10 10 Male 41 40 8

Step 2: Uploading and pre-processing of thedata

Code:

import numpy asn_p

import matplotlib.pyplot asm_atlip
import pandas asp_do
from google.colab import files

up = files.upload()

import io

f r=p_do.read csv(io.ByteslO(up['exc.csvl))

Extraction of independent variable:

71

x_r=f_rilocl:, [3, 4]].vaues

Step 2: By using elbow method we will find the optimum cluster numbers

Code:

from sklearn.cluster import KMeans
wcss=[] #Initializing thelist for the values of WCSS
#Using for loop for iterations from 1 to 10.

foriinrange(l, 11):

k_m=KMeans(n_clusters=i, init=k-means++', random_state= 42)

k_m.fit(x_r)

wcss.append(k_m.inertia)
m_atlip.plot(range(1, 11), wcss)

m_atlip.title('Graph’)

m_atlip.xlabel ('No. of clusters(k))

m_atlip.ylabel (‘wcss)
m_atlip.show()

Output:

Graph

2 4 B B 10
Mo, of clusters(k}

Fig 9. The output of Step 2

Step 3: Training the mode

In step 3 the devel oped
Code:

model will betrained using the training data.

k_m=KMeans(n_clusters=5, init='k-means++', random_state= 42)
y_p=k_m.fit_predict(x_r)

Step 4: Cluster visualization
The clusters must then be seen asthe final stage. Because our model hasfive clusters, well
look at each one separately using the bel ow-mentioned code and figure 10.

Code:
m_atlip.scatter(x_r[y_p
first cluster
m_atlip.scatter(x_r[y_p
r second cluster
m_atlip.scatter(x_r[y
hird cluster
m_atlip.scatter(x_r[y_p
fourth cluster

==0, 0], x_r[y_p==0, 1], s=100, c="blue, label ="Cluster 1') #for
==1,0],x_r[y_p==1, 1], s=100, c = 'green’, label ="Cluster 2') #fo
==2,0],x_r[y_p==2,1],s=100, c="red, label ='Cluster 3") #for t

==3,0], x_r[y_p==3, 1], s=100, c = 'cyan, label ='Cluster 4) #for

72

m_atlip.scatter(x_r[y_p==4, 0], x_r[y_p==4, 1], s= 100, c = 'magentd, label = 'Cluster 5"
#for fifth cluster

m_atlip.scatter(k_m.cluster_centers [:, 0], k_m.cluster_centers [:, 1], s=300, c="yellow', la
bel = 'Centroid’)

m_atlip.title('Clusters of Employee’)

m_atlip.xlabel ('salary (k rupees)’)

m_atlip.ylabel ("Work Score (1-10)")

m_atlip.legend()
m_atlip.show()
Output:
Clusters of Employees
40 @ Cluster 1 L >
@ Cluster 2
] W Cluster =
= Cluster &4
E @ Clusters
— 30 A Centroid
a
S]] @ e e e
=
20
15 1
20 25 30 35 40

salary (kK rupees)

Fig 10. Cluster visualization

4.2.4 Advantages of k-means Clustering

1. Simple Implementation

2. Handles big datasets

3. Surety of Convergence.

4. Warm up the positions of centroids.

5. Works with same efficiency in new situations.

6. It can be applied to eliptical clusters of various forms and sizes.

4.2.5 Disadvantages of k-means Clustering

1. Selection of vale of k manually

2. Initial values dependencies

3. When data clusters are of different sizes and densities, k-means has problems clustering
them.

4. Distance-based similarity measures converge to a fixed value as dimensions increases
between any two cases.

4.2.6 Applications of k-means Clustering

1. Academic scoring system

2. In medicine, K-means are utilised to develop smarter medical decision support systems,
especialy in the treatment of liver illnesses.

3. Search engines helpsto give efficient results using clustering.

4. Wireless sensor networks can able locate cluster heads using clustering.

73

43 K-MEANSRANDOM INITIALIZATION TRAP

The K-means algorithm has a problem called the random initialization trap. When the cluster
centroids formation are defined by the user in the random initialization trap, inconsistency
can be created, which can lead to incorrect clusters being generated in the dataset. As aresult,
the random initialization trap may occasionally prevent us from forming the correct clusters
[4].

Each run of k means produces a different WCSS when the centroids are randomly initialised.
Clustering is suboptimal when the centroids are chosen incorrectly. We use K-means++ to
tackle the problem of inaccurate centroids by selecting the centroids as far as possible at
initialization. The concept is to use centroids to construct different cluster centres to achieve
optimal clustering and converge quickly [5].

Now, let’s understand the concept of the random initialization trap with the help of an
example. Consider figure 11 with data points on the graph, now we want to make clusters of
this dataset using k-means clustering approach based on the attributes or features. Now,
according to the concept of k-means clustering, the clustering will be performed based on
centroids and according to them, the algorithm will generate different clusters.

Trial 1

Based on figure 11 we choose three different centroids in the dataset as shown in figure 12,
which will generate the final model with three different clusters, shown in three different
coloursin figure 13.

Y-axls

X-anis

Fig 11. Data points shown graphically

Y-axis

K-anks

74

Fig 12. Data points with centroidsin trial 1

Y-axis

K-axls
Fig 13. Formation of three different clustersin trial 1
Trial 2:
Now considering another situation in which we take another set of centroids different from
Trail 1 as shown in figure 14, now that will generate the final model different from the earlier
but logically correct as shown in figure 15.

Now from the above example, it has been observed that on the same dataset, we could receive
multiple model outputs. It is a circumstance in which a different set of clusters is created
When the K-means algorithm is given a different set of centroids, it becomes inconsistent and
reliable.

Y-axis

X.axis

Y-axis

Xaxs

75

Fig 15. Formation of three different clustersin trial 2

4.3.1 Solution to the Problem:

To prevent random initialization, we have a solution called k-means++, which is an extension
of k-means. We may aso run the model more than twice. Because of poor random
initialization, k-means frequently wind up in loca optima|[6].

k-means++ uses the following steps to avoid the problem of random initialization trap/
Step 1: select centroids at random for k clusters

Step 2: sum of sgquares distance between each point and each centroid

Step 3: for each data point in the collection, |ocate the shortest distance.

Step 4: To generate a new centroid, compute the mean for each cluster by finding out the data
point number in each cluster.

44 SELECTING THE NUMBER OF CLUSTERS

Determining the correct number of clusters in a data set is a basic difficulty in partitioning
clustering, such as k-means clustering, which requires the user to define the number of
clusters k to be produced. The performance of the k-means clustering method is determined
on the very efficient clusters it generates. Choosing the right amount of clusters, on the other
hand, is a difficult task. There are numerous approaches for determining the best number of
clusters, but we'll focus on the best approach for determining the count of clusters or k value.
The appropriate number of clusters is rather subjective and is determined by the method for
assessing similarity and the partitioning settings [7]. Some of the methods through which we
can determine the number of clustersisasfollow.

1. Direct methods:. Direct techniques entail optimising a criterion, such as the sum of squares
inside the confines of a cluster or the typica silhouette. The comparable procedures are
known as the elbow and silhouette methods.

2. Statistical method: use null hypothesis evidence for comparison, a good example of
statistical method is gap statistic.

Note: In addition to the elbow, silhouette, and gap statistic approaches, more than thirty other
indices and methods for determining the appropriate number of clusters have been published.

4.4.1 Elbow method:

Most prominent methods for analysing the ideal number of clusters is the Elbow approach.
WCSS value notion has been used in this approach [1]. Within Cluster Sum of Sguares
(WCSS) is aterm that describes the total cluster variations held inside a cluster. The formula
for calculating the WCSS value in the case of three clustersis shown in Equation 1.

WCSS = Y Xain duster 1 distance (Xa F1)2 + Y Xain duster 2 distance (Xa F2)2 + > Xain cluster 3
distance (Xa Fs)? "7 7 T T T e (Equation 1)

Referring to Equationl,

76

Y Xainduser 1 distance (Xa F1)2: It isan addition of the centroid and the square of the distance
between every data point.

For cal culating the distance between data points, any method among Manhattan or Euclidean
distance can be used.

To determine the optimal value, the elbow method follows four stepswhich are as follows.
Step 1: It clusters adataset using K-means for various K values. (ranges from 1-10).

Step 2: WCSS value will be computed for each value of K.

Step 3: Plots aline between estimated WCSS values and K clusters.

Step 4: The best K value is considered when a sharp point of bend or aplot point resembles
an arm.

4.4.2 Silhouette M ethod

It assesses the clustering's quality. In other words, it establishes how well each object fits
within its cluster. A high average silhouette width indicates good clustering. The silhouette
method computes the average silhouette of observations for various values of k. The ideal
number of clustersk is the one that maximises the average silhouette over arange of possible
values for k. The silhouette method follows the below-mentioned steps to compute the
optimal value[8].

Step 1: For the different values of k, a clustering algorithm will be computed.

Step 2: Compute the average silhouette for each value of k.

Step 3: Curve will be plotted based on severa clusters.

Step 4: The optimal value will be considered based on the maximum location value.
4.4.3 Gap Statistic Method

The gap statistic compares the tota intra-cluster variation for various values of k to their null
reference distribution expected values. The best clusters will be calculated using the value
that maximises the gap statistic (i.e that yields the largest gap statistic). This suggests that the
clustering structure differs from a random uniform distribution of points in a substantial way.

[8].
45 HIERARCHICAL CLUSTERING

In a hierarchical clustering procedure, the data is organised into a tree of groupings. In
hierarchical clustering, each data point is regarded as a separate cluster. In data mining and
statistics, hierarchical clustering (also known as hierarchica cluster analysis or HCA) is a
cluster analysis method that seeksto establish a hierarchy of clusters[9].

Hierarchica clustering performs the following steps.

1. Identification of the two nearest together clusters.
2. Two maximum clusters get merged and these steps will continue until all the clusters get
merged.

77

The goal of hierarchical clustering is to create a succession of nested clustersin ahierarchical
order. The dendrogram is a type of diagram which represents hierarchical clustering. A
Dendrogram is a tree-like graphic that counts the number of merges or splitsin a series. The
inverted tree graphically shows this hierarchy and describes the sequence in which factors are
merged or clusters are broken up. In this algorithm, we will develop a hierarchy of clusters
due to which this algorithm is known as hierarchical clustering [10].

There are two types of hierarchical clustering which have been explained in detail below.
4.5.1 Agglomerative Clustering:

Agglomerative clustering is the type of hierarchical clustering through which we can generate
hierarchical clusters. It is a technique through which clusters can be developed hierarchically.
In the initial stage of agglomerative clustering, each data point is considered to be its Cluster,
and combine the cluster's nearest couples at each stage. (It's a bottom-up approach.) At
initially, each data set is regarded as a separate entity or cluster. The clusters merge with
other clustersin each cycle until only one cluster remains [11].

Agglomerative clustering consists of the following steps.

1. Computing the similarity of each cluster with other clusters or computing the
proximity matrix.

Every data point is to be considered as asingle and individual cluster.

Clustersthat are nearest to one another and similar will get merged.

Re-compute the proximity matrix

5. Perform the above two steps again until asingle cluster remains.

AW

Now, let us understand this with a demonstration of an example, suppose we have seven data
points named as 1,2,3,4,5,6,7.

-(':_é,3> P
(a)
| [e
(a) —»{(2,3,4,56,7 +1,2,3,4,56,7)
~ s
(s ",» —p— e <
» 4586,7
(s) T—
—»(8,7 O
(7) ===0
Step 1 Step 2 Step 3 Step 4 Step 5

Fig 16. Agglomerative clustering

Referring to figure 16, we have seven different data points and considering them as n
individual clusters, we have merged them in step 2 based on nearest neighbour and similarity.
After merging in step 2, the proximity matrix has been computed again and merging of the
clusters will continue until we get the final big cluster which is shown in figure 16 step 5.

78

4.5.2 Divisive Clustering

Divisive clustering is another type of hierarchica clustering which follows the bottom-up
approach. This clustering technique is just the polar opposite of agglomerative clustering. In
this, we consider al the data points as a single cluster and start separating them into single
clusters or data points according to their incompatibility with other clusters [11]. It is just the
opposite of the agglomerative clustering technique. Divisive clustering is explained with the
help of diagrammatic representation of the above example shown in agglomerative clustering
infigure 17.

ye

| -

L
2 (23 r&—m
3-::-1 — |
s Pl S
(O—] 234567)+——1,234567
_ 45—
5} [Joo g
3 3 4587)e
=] =
= (>_6.7__ e
J
Step5 Step4 Step 3 Step 2 Step 1
Fig 17. Divisive clustering
4.5.3 Dendrogram:

A dendrogram can be used to visualise the history of groups and determine the best number
of clusters[12]. It involves the following points.

1. Determine the longest vertical distance between two clusters that do not intersect any of
the others.

2. At both ends, draw a horizontal line.

3. The optimal number of clustersisequal to the number of vertical lines that pass through
the horizontal line.

4.5.4 Criteriafor Linkage:

A linkage criterion is referred to as the approach that how we are computing the distance
between two clusters [13]. For calculating the distance between the clusters we have four
different methods which are mentioned below.

1. Single linkage: It refers to the shortest distance between two different points in two
different clusters.

2. Completelinkage: It refersto the longest distance between two data points of different
clusters.

3. Average linkage: It is the average distance of a data point of one cluster to all the data
points of another cluster.

4. Ward linkage: It isthe addition of squared differencesin al clusters.

79

455 Distance metric:

The distance metric is defined as the method by which we compute the distance between two
different data points which affect the output of the algorithm [13]. There are two types of
distance metrics we used for cal culating the distance between the data points.

1. Euclidean distance: It refers to the shortest distance between two data points. For
example, if c= (q, w) and g= (r, v) then the Euclidean distance will be V(q-r)? + (W-v)?

2. Manhattan distance: It isdefined as the sum of modulus difference between two data
points. For example, if c= (g, w) and g= (r, v) then the manhattan distance will be |g-r| +

w-v|
4.5.6 Implementation of hierarchical clustering in python:

The implementation of hierarchical clustering in python involves some set of steps which are
discussed as follows.

Step 1: Development of dataset:

As our coding part will be based on python therefore we need to create a database in a .csv
file. The demo database has been shown in table 2 which demonstrate the employee's data of
an organisation.

Table 2. Employees database

Index | EmpID Gender | Age | Salary (Inkrupees) | Work score
1 1 Male 20 25 10
2 2 Female 33 40 5
3 3 Male 21 25 6
4 4 Male 40 40 3
5 5 Female 28 25 7
6 6 Female 19 15 6
7 7 Male 26 25 9
8 8 Male 22 25 4
9 9 Male 35 40 9
10 10 Male 41 40 8

Using table 2 data’s .csv file we will implement hierarchical clustering in python.
Step 2: Importing library

The very first step of implementing the algorithm in python is importing the necessary
libraries so that we can able to use al the important inbuilt functions and classes which are
needed to implement the clustering a gorithm.

Code:

import pandasasp_do

import numpy asn_plo

from matplotlib import pyplot as p_df

from sklearn.cluster import AgglomerativeClustering

80

import scipy.cluster.hierarchy as s iu

Step 3: Uploading and reading the dataset
After creating a.csv file, we need to upload and read that file into a database, so that at the
time of implementation we can able to useit.

Code:

from google.colab import files

up = files.upload()

import io

f_r=p_do.read csv(io.ByteslO(up['exc.csv'))

Step 4: Finding the optimal cluster number using a dendrogram

To find the optimal number of clusters, we use a dendrogram which gives the optimal number
of clusters by showing the number of vertical lines which do not intersect the threshold value
as shown in figure 18. In the below code ward linkage has been used for linking the data
points of different clusters.

Code:

X =f_riloc[:, [3, 4]].vadues
den_gram=s_iu.dendrogram(s_iu.linkage(X, method="ward'))

Output:

20

10 1 I

Fig 18. The output of step 4
Step 5: Deter mining the proximity of the cluster

In this step, AgglomerativeClustering instance has been created to estimate cluster proximity,
find the euclidean distance, which measures the distance between points and ward linkage.
Code:

mod_1 = AgglomerativeClustering(n_clusters=5, affinity="euclidean’, linkage='ward’)
mod_1.fit(X)
labels=mod_1.labels

81

print(labels)

Output:
[3134020314]
Step 6: Displaying the number of output clusters

This is the last step of the implementation, which displays the different number of clusters
and data points based on cluster proximity and distance between the data points. The
generated clusters after the implementation of the algorithm has been shown in figure 19.

40 1 * @
35 1
30
25 eee e @
20 1

1591 @
20 25 3n 35 40

Fig 19. Generated clustering based on data point distance and cluster proximity

4.5.7 Advantagesand disadvantagesof hierarchical clustering:
Advantages:

1. Thereis no requirement for a specific number of clusters.
2. They may match relevant taxonomies.

Disadvantages.

1. Itisimpossible to reverse achoice to join two clusters once it has been taken.
2. O(n2 log(n)) istoo slow for huge data collections.

4.5.8 Applicationsof hierarchical clustering:

1. Clustering of Senators from the United states through Twitter.
2. Used in chart based evolution studies

3. Virustracking

46 SELF-CHECK QUESTIONS
Q1. An example of amovie recommendation system is?
A. Clustering
B. Classification
C. Regression
D. Noneof the above

Q2. Isit possible to use decision trees to perform clustering?

82

A. True
B. Fase

Q3. Given aminimal number of data points, which of the following is the most acceptable
technique for data cleansing before performing clustering analysis:

1. Havouring of variables
2. Outliersremoval

Only 2
Only 1
land 2
None of these

s DOowm>»

Q4.

hat is the bare minimum of variables required for clustering to work?

1
.2
C. 3
D. 0O

© >

Q5. Isit reasonable to assume the same clustering results from two K-Mean clustering runs?

A. NO
B. YES

Q6. Isit conceivable that with K-Means, the assignment of observations to clusters does not
alter over time?

A. NO

B. YES

C. Can’t sy

D. Noneof these

Q7. Which of the following clustering techniques has difficulty with local optima
convergence?

A. Agglomerative clustering
B. Divisive clustering

C. K-meansclustering

D. Maximization clustering

Q8. Which agorithm is the most outlier-sensitive?

A. k-modes clustering
B. k-medoids clustering
C. k-medians clustering
D. k-mean clustering

Q9. In which of the following situations will K-Means clustering fail to produce satisfactory
results?

1. Withoutliers

83

N

With different densities
Data points with round shapes
Data points with non-convex shapes

~w

2and 3

land 2
1,2and 4

All of the above

oCow>

Q10. Exploration should be the primary goal of hierarchical clustering.

A. True
B. Fase

Q11. Which of the following results from Hierarchical Clustering at the end?

A. final cluster centroids estimation

B. atreethat shows how closeitems are to one another
C. Each point isassigned to a cluster.

D. All of the mentioned above

Q12. Which of the following clustering approaches involves merging?

Hierarchica

Naive bayes
Partitiona

None of the above

oCowz>

Q13. Before using the K-Mean technique, it is necessary to scale the features. What isthe
explanation for this?

A. It will usethe same weightsfor all features when calculating distance.

B. Theidentical clusters appear every time. If you employ feature scaling, or if you
don't.

C. Itisasignificant stridein Manhattan distance, but not in Euclidian distance.

D. None of the above

Q14. Method for finding the optimal number of clustersin the k-mean clustering algorithm
is?

Ecludian method

M anhattan method

Elbow method
None of the above

cowp

Q15. K-meansis a non-deterministic algorithm that includes several rounds.

A. True
B. Fase

84

47 SUMMARY

This module will help students to understand various machine learning clustering algorithms
along with their real-time applications, pros and cons. Along with this, the working and
implementation of these clustering algorithms have been discussed in detail. In every section
of the module, a basic introduction of the module followed by its working, assumptions taken
for the algorithm to work, its pros and cons, a real-life application which covers the areas or
fields where that particular algorithm has been used, and at last step by step implementation
of the agorithms in a python programming language has been discussed in detail. The
module also covers the vast diagrammatic representation of agorithm working and
implementation, which will assist the student to understand the concept more clearly and
deeply. In conclusion, this particular module will assist the student to understand the
fundamental idea that how clustering can work in machine learning with the help of various
machine learning clustering algorithms and their step by step work.

48 UNIT END QUESTIONS

Q1. What do you mean by k-means clustering?

Q2. Explain Hierarchical clustering in detail ?

Q3. Explain the k-means random initialization trap in detail, with the help of an example?
Q4. State pros and cons of k-means clustering? Also, state its applications.

Q5. Which method should be used for finding an optimal number of the k-means cluster?
Explain in detail.

Q6. Explain centroid point in the k-means algorithm?
Q7. State advantages, disadvantages and applications of hierarchical clustering
Q8. Explain therole of criterialinkage and distance metric in hierarchica clustering?

Q9. What is adendrogram? Also, explain the elbow method along with its computational
formula?

Q10. Implement k-means and hierarchical clustering with the help of python programming
language?

REFERENCES

[1] https.//www.javatpoint.com/k-means-clustering-a gorithm-in-machine-learning

[2] https.//towardsdatasci ence.com/understanding-k-means-clustering-in-machine-learning-
6a6e67336aal

[3] https.//en.wikipedia.org/wiki/K-means clustering

[4] https.//www.geeksforgeeks.org/ml-random-intialization-trap-in-k-means/

[5] https.//www.linkedin.com/pul se/everything-k-means-navya-rao/

[6] https.//medium.datadriveninvestor.com/k-means-clustering-6f2dc458cce8

85

https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://en.wikipedia.org/wiki/K-means_clustering
https://www.geeksforgeeks.org/ml-random-intialization-trap-in-k-means/
https://www.linkedin.com/pulse/everything-k-means-navya-rao/
https://medium.datadriveninvestor.com/k-means-clustering-6f2dc458cce8

[7] https.//www.geeksforgeeks.org/ml-determine-the-optimal-val ue-of-k-in-k-means-
clustering/

[8] https.//www.datanovia.com/en/lessons/determining-the-optimal-number-of -clusters-3-
must-know-methods/

[9] https.//www.geeksforgeeks.org/hi erarchical -clustering-in-data-mining/

[10] https://towardsdatasci ence.com/understanding-the-concept-of -hierarchical-clustering-
technique-c6e8243758ec

[11] https.//mvww.and yti csvidhya.com/blog/2019/05/beginners-guide-hi erarchi cal-clustering/
[12] https://en.wikipedia.org/wiki/Hierarchical _clustering

[13] https:.//www.displayr.com/what-is-hierarchical -
clustering/#:~:text=Hierarchi ca %20cl ustering%2C%20al s0%20known%20as, broadl y%20si
milar%20t0%20each%200ther.

86

https://www.geeksforgeeks.org/ml-determine-the-optimal-value-of-k-in-k-means-clustering/
https://www.geeksforgeeks.org/ml-determine-the-optimal-value-of-k-in-k-means-clustering/
https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/
https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/
https://www.geeksforgeeks.org/hierarchical-clustering-in-data-mining/
http://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
http://www.displayr.com/what-is-hierarchical-

MACHINE LEARNING
UNIT V: ARTIFICIAL NEURAL NETWORK

STRUCTURE

5.0 Objective

5.1 Introduction to ANN

5.2Biology Neural Network

5.3 Artificial Neural Network Applications
5.4 Neural Network Architecture Type

5.5 Learning

5.6 Activation Function In Python

5.7 Summary

5.8 Practice Exercise

87

5.0 OBJECTIVE

e Under standing biological neural networks; Usefulness and Applications of ANNS,
e Architecturesof ANNSs: Single layer, Multi layer, Competitive layer;
e Learning: Supervised and Unsupervised

51 INTRODUCTION TO ANN

Neural networks replicate the performance of the human brain, which allows computer programs
to identify patterns and solve common issues in the fields of Machine learning, Deep learning,
and Artificial Intelligence (Al).

Simulated Neural Networks (SNNs) or Artificial Neural Networks (ANNS), are also known as
Neural Networks. They are at the core of Deep Learning and a subset of Machine learning
algorithms. Their structure and name are motivated by the human brain

Artificial neural networks (ANNS) are composed of node layers, containing one or more hidden
layers, an output layer, and an input layer. An artificial neuron or every node is attached to
another and has an associated threshold and weight. A node is activated when the output of any
single node is above the specific threshold value. An activated node can send data to the
subsequent layer in the network. Else, no data can be passed to the subsequent layer in the
network.

Deep neural network
Input layer Multiple hidden layers Output layer

Q0000
00000

Neura networks depend on training data to study and progress their accuracy over time. Once
the learning algorithms are ready with accuracy, then they become powerful tools in Artificial
Intelligence and Computer Science, allow you to categorize and cluster data at a very high
velocity. Works in image recognition or speech recognition can take few minutes concerning the
manual identification done by human experts. Google‘s search algorithm is one of the famous
neural networks.

52 BIOLOGICAL NEURAL NETWORK

Researchers have tried many times to copy the biological systems, one of the results of such
research is Artificial Neural Networks motivated by theliving organism‘s biologica neural

88

https://www.ibm.com/cloud/learn/deep-learning

networks. On the other hand, they are very much dissimilar in many ways. For instance, the
inspiration behind the invention of airplanes by researchers was birds, and similarly, the four-
legged animals motivated researchers to develop cars.

The artificia parts are very powerful and make our life improved. The predecessors of artificial
neurons are perceptrons, which were shaped to mimic certain parts of a biological neuron-like
dendrite, axon, and cell body using electronics, mathematical models, and whatever partial data
we have of biological neural networks.

5.2.1 Partsof aBiological Neural Network

Neuron

In human beings, the brain is the control unit of the neural network. It has various subunits that
take care of senses, vision, senses, hearing, and movement. The brain is connected to the rest of
the body‘s sensors and actors through a dense network of nerves. There are almost 10™* neurons
in the brain. These are the building blocks of the entire central nervous system of human beings.

The neuron is the basic building block of neural networks. The neuron is the fundamental unit of
neural networks. A neuronisacell, like any other cell in the body that contains a DNA code and
is produced in the same way as other cells in biological systems. Even though each organism's
DNA is different, the function is the same. The cell body (also known as Soma), axon and
dendrites are the three major components of a neuron. Dendrites are like fibers that branch out in
different directions and connect to a large number of cellsin acluster.

The axon receives signals from neighboring neurons and sends them to the other neurons through
dendrites. A synapse connects the axon's terminating terminal to the dendrite. Axon is a long
fiber that transfers the output signal along its length as electric impulses. Axons are the
extensions of neurons. Each neuron has one axon. Axons act as a domino effect, passing
impulses from one neuron to the next.

A typica human brain nerve cell is made up of four parts:
Function of Dendrite: Other neurons send signalsto it.

Soma (cell body):

89

To generate input, it adds all of the incoming signals together.
Axon Structure:

When the neuron fires sum reaches a threshold value, and the signal goes down the axon to the
other neurons.

Synapses Working:
The strength (synaptic weights) of the synapses determine the quantity of signal sent.

Biological Neuron

dendrites « o 4

y "\“
.) SYNapses
nucleus axon s

cel body

The connections can be excitatory (increasing strength) ot inhibitory (decreasing strength) in
nature. In general, a neural network consists of a connected network of billions of neurons with
trillions of interconnections.

Since biological and artificial neural networks are so closely related, theoretical examination of
biological neural networks is necessary for devel oping mathematical models for artificial neural
networks. This new knowledge of the brain's neura networks has paved the way for the creation
of artificial neural network systems and adaptive systems that can learn and adapt to new settings
and inputs.

Perceptron Model { Minskv-Papert i 1969)

90

5.2.1 Working of BNN

Consider each node as a separate model, with weights, input data, an output, and a threshold.
Thisiswhat the formulawould look like:

m
Z Wix; + bias = wox; + WeX, + Wex; + bias
i=1

>i=1 mwixi + bias = wix1 + w2x2 + w3x3 + bias

1if2w,x, +b=0
output = f(x) =
put = f(x) {0if2w1x1+b<0

output =f(x) = 1 if Ywlxl +b>=0; 0 if Ywlxl +b<0

Weights are assigned once an input layer has been defined. These weights aid in determining the
importance of any given variable, with larger ones contributing more to the output than smaller
ones. After that, all of the inputs are multiplied by their respective weights and then added
together. The output is then run through an activation function to determine the output. If the
output reaches a certain threshold, the node "fires" (or activates), sending data to the network's
next tier. As aresult, one node's output becomes the input of the next node. The neural network
isreferred as afeed forward network since data is passed from one layer to the next.

Well utilise supervised learning, or labelled datasets, to train the algorithm as we consider more
practical use cases for neura networks, such as image recognition or classification. After training
the model, its accuracy will be check using a loss or (cost) function. This is also known as the
Mean Squared Error (MSE). In the equation below,

i represents the index of the sample,
y-hat is the predicted outcome,
y isthe actual value, and

m is the number of samples.

- l m R ,
Cost Function = MSE = e Z v—y
i=1

The ultimate goal is to reduce our cost function in order to ensure that each given observation is
correctly suited. The model employs the cost function and reinforcement learning to approach
the local minimum or the point of convergence, as it adjusts its weights and bias. Gradient
descent is the method by which the agorithm modifies its weights, allowing the model to

91

discover the best path to minimise the cost function (or minimise the mistakes). The parameters
of the model adapt with each training case to progressively converge at the minimum.

Loss

/ Starting point

Value of weight

Point of convergence, i.e.
where the cost function is
at its minimum

The magjority of deep neural networks are feed forward, which means they only flow one way,
from input to output. Backpropagation, or moving in the reverse direction from output to input, is
another way to train your model. Backpropagation allows us to calculate and attribute each
neuron's error, allowing us to tweak and fit the model(s) parameters correctly.

53 _ARTIFICIAL NEURAL NETWORK APPLICATIONS

Image Compression — Neural networks receive and process large volumes of data all at once. As
aresult, they're useful for image compression. With the growth of the Internet and the increasing
use of images on websites, using neural networks for image compression is a viable option.

Handwriting Recognition — The concept of handwriting recognition has gained a lot of traction.
This is due to the growing popularity of handheld devices such as the Pam Pilot. As a resullt,
neural networks can be used to recognise handwritten characters.

Stock Exchange Prediction — The stock market's day-to-day operations are extremely complex.
Many factors influence whether a stock will rise or fall in value on any given day. As a result,
neural networks can quickly review and sort alarge amount of data. As aresult, they can be used
to forecast stock prices.

Traveling Salesman Problem The traveling salesman problem can also be solved using neural
networks. However, thisis simply an approximation to a certain degree.

92

54 NEURAL NETWORK ARCHITECTURE TYPE

e 2 _onse
@ e 999 Ay
& o @ @000 Olee
W e o ® 90 soee
<tocisiolliiliRevircory ® o
M Lyt Pecaption Tt s mom 4 Damrod Pt et
@)
5 LN - S @9
- . x? -4 .
e o -0 @& -0
o990 L &0
e LA
LSTU Rsc e
PaL e Nt e ol ' ST rww) Mastn
."- it Unit . Hddon Uit el:-.-'-.n et Lot
.'.‘umJ Ly &c ewbaeck mth Mamory Und eF‘.—.'.,:.h:»-b~b donink

5.4.1 Perceptron Model in Neural Networks

Neural Network is having two input units and one output unit with no hidden layers. These are
also known as _single-layer perceptrons.’

5.4.2 Radial Basis Function Neural Network
These networks are similar to the feed-forward Neural Network, except radial basis function is
used as these neurons' activation function.

5.4.3 Multilayer Perceptron Neural Network
These networks use more than one hidden layer of neurons, unlike single-layer perceptron. These
are also known as Deep Feedforward Neural Networks.

5.4.4 Recurrent Neural Network

Type of Neural Network in which hidden layer neurons have self-connections. Recurrent Neural
Networks possess memory. At any instance, the hidden layer neuron receives activation from the
lower layer and its previous activation value.

5.4.5 Long Short-Term Memory Neural Network (L STM)
The type of Neural Network in which memory cell is incorporated into hidden layer neuronsis
called LSTM network.

93

5.4.6 Hopfield Network

A fully interconnected network of neurons in which each neuron is connected to every other
neuron. The network is trained with input patterns by setting a value of neurons to the desired
pattern. Then its weights are computed. The weights are not changed. Once trained for one or
more patterns, the network will converge to the learned patterns. It is different from other Neural
Networks.

5.4.7 Boltzmann Machine Neural Network

These networks are similar to the Hopfield network, except some neurons are input, while others
are hidden in nature. The weights are initialized randomly and learn through the backpropagation
algorithm.

5.4.8 Modular Neural Network

It is the combined structure of different types of neural networks like multilayer perceptron,
Hopfield Network, Recurrent Neural Network, etc., which are incorporated as a single module
into the network to perform independent subtask of whole complete Neural Networks.

5.4.9 Physical Neural Networ k
In this type of Artificial Neural Network, electrically adjustable resistance material is used to
emulate synapse instead of software simulations performed in the neural network.

55_LEARNING
5.5.1 Supervised Learning

Supervised learning, as the name indicates, has the presence of a supervisor as a teacher.
Basically supervised learning is when we teach or train the machine using data that is well
labeled. Which means some data is aready tagged with the correct answer. After that, the
machine is provided with a new set of examples(data) so that the supervised learning algorithm
analyses the training data(set of training examples) and produces a correct outcome from labeled
data

For instance, suppose you are given a basket filled with different kinds of fruits. Now the first
step isto train the machine with all different fruits one by one like this:

94

If the shape of the object is rounded and has a depression at the top, isred in color, then it will be
labeled as—-Apple.

If the shape of the object is a long curving cylinder having Green-Y ellow color, then it will be
labeled as—Banana.

Now suppose after training the data, you have given a new separate fruit, say Banana from the
basket, and asked to identify it.

Since the machine has aready learned the things from previous data and this time has to use it
wisaly. It will first classify the fruit with its shape and color and would confirm the fruit name as
BANANA and put it in the Banana category. Thus the machine learns the things from training
data(basket containing fruits) and then applies the knowledge to test data(new fruit).

Supervised learning classified into two categories of agorithms:

Classification: A classification problem is when the output variable is a category, such as —Redl
or —bluel or —diseasel and —no diseasel.

Regression: A regression problem iswhen the output variableis areal value, such as —dollarsl or
—weightl.

Supervised learning deals with or learns with —labeledl data. This implies that some data is
already tagged with the correct answer.

Types:-

Regression

Logistic Regression
Classification

Naive Bayes Classifiers

K-NN (k nearest neighbors)

95

Decision Trees

Support Vector Machine

Advantages:-

Supervised learning allows collecting data and produces data output from previous experiences.
Helps to optimize performance criteriawith the help of experience.

Supervised machine learning hel ps to solve various types of real-world computation problems.
Disadvantages:-

Classifying big data can be challenging.

Training for supervised learning needs alot of computation time. So, it requires alot of time.

| 1 1
[Training D.IAFD;..‘“'.;Vmgbl Algorithm :9,[Model]

Supervised learning is a machine learning task where an algorithm is trained to find patterns
using a dataset. The supervised learning algorithm uses this training to make input-output
inferences on future datasets. In the same way a teacher (supervisor) would give a student
homework to learn and grow knowledge, supervised learning gives algorithms datasets so it too
can learn and make inferences.

To illustrate how supervised learning works, let‘s consider an example of predicting the marks of
a student based on the number of hours he studied.

Mathematically,

Y= f(X)+ C

is broken down as follows:

f will be the relation between the marks and number of hours the student prepared for an exam.
X isthe INPUT (Number of hours he prepared).

Y isthe output (Marks the student scored in the exam).

C will bearandom error.

The ultimate goal of the supervised learning algorithm is to predict Y with the maximum
accuracy for a given new input X. There are several ways to implement supervised learning and
we‘ll explore some of the most commonly used approaches.

96

Based on the given data sets, the machine learning problem is categorized into two
types: classification and regression. If the given data has both input (training) values and output
(target) values, then it is a classification problem. If the dataset has continuous numerical values
of attributes without any target labels, then it is aregression problem.

Below is an example of where you can use supervised learning and unsupervised learning.
Classification: Has the output label. Isit a Cat or Dog?

Regression: How much will the house sell for?

Classification

Consider the example of a medical researcher who wants to analyze breast cancer data to predict
one of three specific treatments a patient should receive. This data analysis task is called
classification, and amodel or classifier is constructed to predict class labels, such as —treatment
A,l —treatment Bl or —treatment C.|

Classification is a prediction problem that predicts the categorical class labels, which are discrete
and unordered. It is atwo-step process, consisting of alearning step and a classification step.

METHODS IN CLASSIFICATION AND CHOOSING THE BEST.

There are severa classification techniques that one can choose based on the type of dataset
they're dealing with. Below isalist of afew widely used traditional classification techniques:

K—nearest neighbor
Decision trees

Naive Bayes

Support vector machines

In the first step, the classification model builds the classifier by analyzing the training set.
Next, the class labels for the given data are predicted. The dataset tuples and their associated
class labels under analysis are split into a training set and test set. The individual tuples that
make up the training set are randomly sampled from the dataset under analysis. The remaining
tuples form the test set and are independent of the training tuples, meaning they will not be used
to build the classifier.

Thetest set is used to estimate the predictive accuracy of aclassifier. The accuracy of aclassifier
is the percentage of test tuples that are correctly classified by the classifier. To achieve higher
accuracy, the best way is to test out different algorithms and try different parameters within each
algorithm. The best one can be selected by cross-validation.

97

https://builtin.com/data-science/unsupervised-learning-python

To choose a good agorithm for a problem, parameters such as accuracy, training time, linearity,
number of parameters and special cases must be taken into consideration for different algorithms.

Implementing KNN In Scikit-Learn On Iris Dataset

The first step in applying our machine learning agorithm is to understand and explore the given
dataset. In this example, we'll use the Iris dataset imported from the scikit-learn package. Now
let‘s dive into the code and explore the IRIS dataset.

Before getting started, make sure you install the following python packages using pip.
pip install pandas

pip install matplotlib

pipinstall scikit-learn

In this snippet of code, we learn about the attributes of the IRIS dataset using afew methodsin
pandas. (eda_iris_dataset.py on GitHuUB)

fromsklearn import datasets

import pandas as pd

importmatplotlib.pyplot as plt

Loading IRIS dataset from scikit-learn object into irisvariable.
iris = datasets.|oad _iris()

Printsthetype/type object of iris
print(type(iris))

<class 'sklearn.datasets.base.Bunch™

prints the dictionary keys of iris data
print(iriskeys())

printsthe type/type object of given attributes
print(type(iris.data), type(iris.target))

prints the no of rows and columnsin the dataset

print(iris.data.shape)

98

https://gist.github.com/vihar/debab263007a49aa95f9b80d8bf03d4f

printsthetarget set of the data

print(iris.target_names)

Load iristraining dataset

X =iris.data

#Load iristarget set

Y =iristarget

Convert datasets' type into dataframe

df = pd.DataFrame(X, columns=iris.feature_names)

Print the first five tuples of dataframe.

print(df.head())

Outpuit:

<class ‘sklearn.datasets.base.Bunch’>

dict_keys([‘data’, ‘target’, ‘target names’, ‘DESCR’, ‘feature_names’])]
<class ‘numpy.ndarray’><class ‘numpy.ndarray’>

(150, 4)

[‘setosa’ ‘versicolor’ ‘virginica’]

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 51 35 1402

1 49 30 14 02

2 47 32 13 02

w

46 31 1502

1N

50 36 14 02

K-nearest neighborsin Scikit-learn.

99

An agorithm is said to be a lazy learner if it smply stores the tuples of the training set and
walits until the test tuple is given. Only when it sees the test tuple does it perform generalization
to classify the tuple based on its similarity to the stored training tuples.

K-nearest neighbor (k-NN) classifier isalazy learner.

Based on learning by analogy, k-NN compares a given test tuple with training tuples that are
similar to it. The training tuples are described by n attributes. Each tuple represents a point in
an n-dimensional space. In thisway, all training tuples are stored in n-dimensional pattern space.
When given an unknown tuple, a k-NN classifier searches the pattern space for the k training
tuples that are closest to the unknown tuple. These k training tuples are the k —nearest neighborsl
of the unknown tuple.

—Closenessl is defined regarding a distance metric, such as Euclidean distance. A good value for
K is determined experimentally.

In this snippet, we give import k-NN classifier from sklearn and apply to our input data which
then classifies the flowers. (http://knn_iris_dataset.py on GitHub)

fromsklearn import datasets

fromsklearn.neighborsimport KNe ghborsClassifier

Load irisdataset from sklearn

iris = datasets.load_irig()

Declare an of the KNN classifier class with the value with neighbors.

knn = KNeighborsClassifier(n_ne ghbors=6)

Fit the model with training data and target values
knn.fit(irig'data], irig'target])

Provide datawhose class |abels are to be predicted
X=[

[5.9, 1.0, 5.1, 1.8],

100

https://gist.github.com/vihar/fe40534fbb5416062be65e8f99f83e36

[3.4,20, 1.1, 48],

Printsthe data provided

print(X)

Store predicted classlabels of X

prediction = knn.predict(X)

Printsthe predicted classlabels of X
print(prediction)

Output:

[11]

Here,

0 corresponds versicolor

1 corresponds virginica

2 corresponds setosa
Based on the given input, the machine predicted the both flowers are versicolor using k-NN.
K-Nn Intuition For Iris Dataset Classification

If we plot the classified data using the k-NN agorithm in the Iris dataset this is how the flowers
are categorized based on the features. the x-axis represents the peta width and the y-axis
represents the petal length.

101

\ , Versicolor

Virginica

-
. s—— -
.-

Setosa

5.5.2 Unsupervised learning

Unsupervised learning is the training of a machine using information that is neither classified nor
labeled and allowing the algorithm to act on that information without guidance. Here the task of
the machine is to group unsorted information according to similarities, patterns, and differences
without any prior training of data.

Unlike supervised learning, no teacher is provided that means no training will be given to the
machine. Therefore the machine is restricted to find the hidden structure in unlabeled data by
itself.

For instance, suppose it is given an image having both dogs and cats which it has never seen.

Thus the machine has no idea about the features of dogs and cats so we can‘t categorize it as
_dogs and cats _. But it can categorize them according to their similarities, patterns, and
differences, i.e., we can easily categorize the above picture into two parts. The first may contain
all pics having dogs in it and the second part may contain all pics having cats in it. Here you
didn‘t learn anything before, which means no training data or examples.

It allows the model to work on its own to discover patterns and information that was previously
undetected. It mainly deals with unlabelled data.

Unsupervised learning is classified into two categories of algorithms:

102

Clustering: A clustering problem is where you want to discover the inherent groupings in the

data, such as grouping customers by purchasing behavior.

Association: An association rule learning problem is where you want to discover rules that
describe large portions of your data, such as people that buy X also tend to buy Y.

Types of Unsupervised Learning:-

e Clustering

e Exclusive (partitioning)

e Agglomerative

e Overlapping

e Probabilistic

e Clustering Types.-

0 Hierarchica clustering

0 K-means clustering

0 Principal Component Analysis

0 Singular Value Decomposition

0 Independent Component Analysis
Supervised vs. Unsupervised Machine Learning

Supervised machine Unsupervised machine
Parameters learning learning
Algorithms are trained using | Algorithms are used against data that

Input Data labeled data. is not |abeled
Computational
Complexity Simpler method Computationally complex
Accuracy Highly accurate L ess accurate

103

In supervised learning, we start by importing a dataset containing training attributes and the
target attributes. The supervised learning algorithm will learn the relation between training
examples and their associated target variables, then apply that learned relationship to classify
entirely new inputs (without targets).

5.6 ACTIVATION FUNCTION IN PYTHON

froml Python.displayimportimage

Image(filename="data/Activate_functions.png’)

Activation function determmes if a neuron tires
./——\
X1 ’.\ /}_\\ W1
e
\\ /f'\\
N/ \
I W3 { \
X2 o‘\ I.} * Z I [—y
== \ /
2\ v
/ _\‘ /_1
J— ’/‘
N\ W3
X3)/

e’
—

Input nodes
Out[2]:

5.6.1 Binary Step Activation Function

Binary step function returnsvalue either O or 1.

It returns ‘0" if the input is the less then zero

It returns'1'if theinput is greater than zero

In[3]:

defbinaryStep(x):

"It returns'0'istheinput islessthen zero otherwiseit returnsone ™
returnnp.heaviside(x,1)

In[4]:

x=np.lingpace(-10,10)

104

plt.plot(x,binaryStep(x))

plt.axis(‘tight’)

plt.title("Activation Function :binaryStep’)

plt.show()

10 A

08 +

06 1

0.4 1

0.2 1

0.0 1

Activation Function :binaryStep

-0 -75 -50 -25

5.6.2 Linear Activation Function

Linear functions are pretty ssmple. It returnswhat it gets asinput.

In[5]:
deflinear(x):
returnx

In[6]:
x=np.lingpace(-10,10)
plt.plot(x,linear(x))

plt.axis(‘tight")

y =f(x) It returnstheinput asitis"

plt.title('Activation Function :Linear")

plt.show()

0.0

105

25

5.0

75

10.0

Activation Function :Linear

-100 -75 -50 -25 0.0 25 50 75 10.0

5.6.3 Sigmoid Activation Function

Sigmoid function returns the value beteen 0 and 1. For activation function in deep learning
network, Sigmoid function is considered not good since near the boundaries the network doesn't
learn quickly. Thisis because gradient is almost zero near the boundaries.

In[7]:
defsigmoid(x):

" It returns 1/(1+exp(-x)). where the values lies between zero and one ™

returnl/(1+np.exp(-x))

In[8]:

x=np.lingpace(-10,10)
plt.plot(x,sigmoid(x))

plt.axis(‘tight")

plt.title("Activation Function :Sigmoid")

plt.show()

106

Activation Function :Sigmoid

104

08

06 4

044

0.2 1

00

-100 -75 -50 -Z5 00 25 50 75 100

5.6.4 Tanh Activation Function

Tanh isanother nonlinear activation function. Tanh outputs between -1 and 1. Tanh also suffers
from gradient problem near the boundaries just as Sigmoid activation function does.

In[9]:
deftanh(x):

" It returns the value (1-exp(-2x))/(1+exp(-2x)) and the value returned will beliesin between -1
to1."

returnnp.tanh(x)

In[10]:

x=np.lingpace(-10,10)
plt.plot(x,tanh(x))

plt.axis(‘tight’)

plt.title('Activation Function :Tanh')

plt.show()

107

Activation Function -Tanh

100
075
050
025
0,00
-0.25
-0.50
-0.75

-1.00

—].E].O —'J'I.S —5:.0 —2|.5 DIG 2I5 SIO ?IS IUI.EI
5.6.5 RELU Activation Function

RELU is more well known activation function which is used in the deep learning networks.
RELU isless computational expensive than the other non linear activation functions.

RELU returns O if the x (input) islessthan O

RELU returnsx if thex (input) isgreater than 0

In[11]:

defRELU(X):

" It returns zero if the input islessthan zero otherwise it returns the given input. ™
x1=[]

foriinx:

ifi<0:

x1.append(0)

ese

x1.append(i)

returnx1
In[12]:

x=np.lingpace(-10,10)
plt.plot(x,RELU(X))

108

plt.axis(‘tight’)
pit.title('Activation Function :RELU')
plt.show()

Activation Function :RELU

10 1

—].tI].U —]‘:.5 —5I.[}I —2I.5 [}IIG 2|5 SIU ?IS IUI.D
5.6.6 Softmax Activation Function

Softmax turns logits, the numeric output of the last linear layer of a multi-class classification
neura network into probabilities.

We can implement the Softmax function in Python as shown below.
In[13]:

defsoftmax (x):

" Compute softmax values for each sets of scoresin x. ™
returnnp.exp(x)/np.sum(np.exp(x),axis=0)

In[14]:

x=np.lingpace(-10,10)

plt.plot(x,softmax(x))

plt.axis('tight’)

plt.title('Activation Function :Softmax’)

plt.show()

109

Activation Function -Softmax

0.35

0.30

025

0.20

0.15

0.10

0.05

-0 -75 =50 -25 00 25 50 75 100

hisis an example plot from the tutorial which accompanies an explanation of the support vector
machine GUI.

importnumpyasnp

frommatplotlibimportpypl otasplt

fromsklearnimportsvm

datathat islinearly separable
deflinear_model (rseed=42, n_samples=30):
" Generate data according to alinear model”
np.random.seed(rseed)
data=np.random.normal (0, 10, (n_samples, 2))
data[:n_samples//2] -=15
data[n_samples//2:] +=15
labels=np.ones(n_samples)
labelg[:n_samples//2] =-1

return data, labels

X,y =linear_model()
clf=svm.SVC(kerne="linear")

cf fit(X, y)

110

https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html#numpy.random.normal
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

plt.figure(figsize=(6, 4))

ax=plt.subplot(111, xticks=[], yticks=[])
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.bone)
ax.scatter(clf.support_vectors [:, 0],
clf.support_vectors [:, 1],

s=80, edgecolors="k", facecolors="none")

delta=1

y_min, y_max=-50, 50

X_min, X_max=-50, 50

X =np.arange(X_min, X_max+ delta, delta)

y =np.arange(y_min, y_max+ delta, delta)

X1, X2 =np.meshgrid(x, y)

Z =clf.decision_function(np.c_[X1.ravel(), X2.ravel()])

Z =Z.reshape(X 1.shape)

ax.contour(X1, X2, Z,[-1.0, 0.0, 1.0], colors='k’,

linestyles=['dashed', 'solid’, ‘dashed])

data with anon-linear separation

111

"
w
B H‘“-\-:_;
- T
" -
l". .\.-h-
- .
“a, =,
-\.- -\'.\.
" —
” L T
-
1 S i
L . L] L “u
- .
-, o
[] L] T =18
[L 1
-

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.c_.html#numpy.c_

defnonlinear_model (rseed=42, n_samples=30):
radius=40* np.random.random(n_sampl es)
far_pts=radius >20

radiugfar_pts] *=1.2

radiug~far_pts] *=1.1

theta=np.random.random(n_samples) * np.pi*2

data=np.empty((n_samples, 2))
datd[:, 0] = radius* np.cos(theta)

data[:, 1] = radius * np.sin(theta)

labels=np.ones(n_samples)
labelg[far_pts] =-1

return data, labels

X, y =nonlinear_model ()

clf=svm.SV C(kernel="rbf', gamma=0.001, coef0=0, degree=3)
clf.fit(X, y)

plt.figure(figsize=(6, 4))
ax=plt.subplot(1, 1, 1, xticks=[], yticks=[])
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.bone, zorder=2)

ax.scatter(clf.support_vectors [:, 0], clf.support_vectors [:, 1],

112

https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html#numpy.random.random
https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html#numpy.random.random
https://numpy.org/doc/stable/reference/constants.html#numpy.pi
https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://numpy.org/doc/stable/reference/generated/numpy.cos.html#numpy.cos
https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot

s=80, edgecolors="k", facecolors="none")

delta=1

y_min, y_max=-50, 50

X_min, Xx_max=-50, 50

X =np.arange(X_min, X_max+ delta, delta)

y =np.arange(y_min, y_max+ delta, delta)

X1, X2 =np.meshgrid(x, y)

Z =clf.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z =Z.reshape(X 1.shape)

ax.contour(X1, X2, Z,[-1.0, 0.0, 1.0], colors='k’,
linestyles=['dashed’, 'solid', 'dashed], zorder=1)

plt.show()

113

https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.c_.html#numpy.c_
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show

MACHINE LEARNING
UNIT VI: SUPERVISED MODELS

STRUCTURE

6.0 Objectives

6.1 Hebb Net: Algorithm, Application For And Problem
6.1.1 Hebbian L earning Rule Algorithm
6.1.2 Implementing AND Gate

6.2 Perceptron
6.2.1 Perceptron Learning Rate
6.2.2 Perceptron Function
6.2.3 Inputs of a Perceptron
6.2.4 Error in Perceptron
6.3 ADALINE
6.3.1 Architecture
6.3.2 Training Algorithm
6.3.3 Testing Algorithm
6.3.4 Adaline python implementation
6.4 Conclusions

6.5 Practice Exercises

114

6.0 OBJECTIVE

Supervised learning is the sorts of Al wherein machines are trained utilizing well "marked"
preparing information, and on premise of that information, machines foresee the output. The
labeled data implies some information is now labeled with the right output .

The labeled training data work as a supervisor to the mchine which trains the machine to predict
correctly in supervised learning.It is similar to te concept that teacher teaches the student to learn
the concepts better.

In reality, supervised learning can be utilized for Risk Assessment, Image arrangement, Fraud
Detection, spam sifting, and so on

6.1 HEBB NET: ALGORITHM, APPLICATION FOR AND PROBLEM

The Hebbian rule was the principal learning rule. In 1949 Donald Hebb created it as learning
calculation of the unsupervised neural network. We can utilize it to distinguish how to improve
node weights of a network.

The hebb learning rule is assumed to be-the weight associated with two neurons increases if 2
neurons activated and deactivated simultaneously. For neurons working in the contrary phase,
the weight between them should diminish.The wieght should be constant if no signal correlation
isthere.

The Hebbian learning rule describes the formula as follows:

W, = X *X

6.1.1 Hebbian Learning Rule Algorithm :

Intialise weights to zero, wi = 0 for i=1 to n, and bias to zero.

For each input vector |: t(target output pair), repeat steps 3-5.

Set activations for input unitswiththe l as X; =S fori = 1ton.
Set the corresponding output value to the output neuron, i.e. y =t.
Update weight and bias by applying Hebb rule for all i =1 ton:

a bk wbdeE

W (new)=w (old) + x y

binew)=b(old) +vy

115

https://data-flair.training/blogs/wp-content/uploads/sites/2/2017/07/hebbian-learning-rule.png

6.1.2 Implementing AND Gate

INFLIT TARGET

|
|

3 ' A 1 ! 1 Y, A
|

b4 ! i i

L]

Truth Table of AND Gate using bipolar sigmoidal function

There are 4 training samples, so there will be 4 iterations. Also, the activation function used
here is Bipolar Sigmoidal Function so the rangeis|[-1,1].

Step 1:

Set weight and biasto zero,w=[000]T and b =0.
Step 2:

Set input vector Xi =S fori =1to4.
X1=[-1-11]T

X2=[-111]"

X3=[1-11]

Xa=[111]
Step 3:
Output valueissettoy = t.

Step 4.
Modifying weights using Hebbian Rule:

First iteration —

w(new) =w(old) + xiy1 =[000]"+[-1-11]".[-1]=[11-1]
For the second iteration, the final weight of the first one will be used and so on.

Second iteration —

whnew)=[11-1]"+[-111]".[-1]=[20-2]"
Third iteration —

whew)=[20-2]"+[1-11]".[-1]=[11-3]"
Fourth iteration —

wnew)=[11-3]"T+[111]".[1]=[22-2]T

116

So, the final weight matrix is[22 -2]7
Testing the network :

The network with the final weights

Forxi=-1,x2=-1,b=1Y =(-1)(2) + (-1)(2) + (1)(-2) =-6
Forxi=-1,x2=1,b=1Y =(-1)(2 + (1)(2) + ()(-2) =-2
Forxi=1,x2=-1,b=1Y =(1)(2) + (-1)(2) + (1)(-2) =-2
Forxi=1,x2=1,b=1,Y =(1)(2) + ()2 + (1)(-2) =2
The results are all compatible with the original table.

Decision Boundary :
2X1+2X2—-2b=y

Replacingy with 0, 2x1 + 2x2 —2b =0
Sincebias, b=1,s02x1+2x2—-2(1) =0
2(X1+Xx2)=2

Thefina equation, X2 =-x1 + 1

%

Decision Boundary of AND Function

117

Implementation of Hebb Net

#Learning Rules#
import math

def computeNet(input, weights):
net=0
for i in range(len(input)):
net = net + input[i]*weightg[i]
print" NET:"
print net

return net

def computeFNetBinary(net):
f net=0
if (net>0):
f net=1
if (net<0):
f net=-1
returnf_net

def computeFNetCont(net):
f net=0
f_net = (2/(1+math.exp(-net)))-1
returnf_net

def hebb(f_net):
returnf_net

118

def perceptron(desired, actua):
return (desired-actual)

def widrow(desired, actual):
return (desired-actual)

def adjustWeights(inputs, weights, last, binary, desired, rule):
c=1
if(last):
print" COMPLETE"
return
current_input = inputg[0]
inputs = inputg 1:]
if desired :
current_desired = desired[0]
desired = desired[1:]
if len(inputs) ==0:
last = True
net = computeNet(current_input, weights)
if(binary):
f _net = computeFNetBinary(net)
ese
f_net = computeFNetCont(net)
if rule=="hebb":
r = hebb(f_net)
elif rule=="perceptron”:
r = perceptron(current_desired, f_net)
elif rule=="widrow" :
r =widrow(current_desired, net)
del_weights={]

119

for i inrange(len(current_input)):
X = (c*r)*current_input[i]
del_weights.append(x)
weightg[i] = X
print(" NEW WEIGHTS:")
print(weights)
adjustWeights(inputs, weights, last, binary, desired, rule)

if _name_=="_main__
#total _inputs= (int)raw_input("Enter Total Number of Inputs)
#vector_length = (int)raw_input("Enter Length of vector)
total_inputs=3
vector_length=4
#for i in range(vector_length):
#weight.append(raw_input("Enter Initial Weight:")
weights =[1,-1,0,0.5]
inputs=[[1,-2,1.5,0],[1,-0.5,-2,-1.5],[0,1,-1,1.5]]
desired =[1,2,1,-1]
print(" BINARY HEBB!")
adjustWeights(inputs, [1,-1,0,0.5], False, True, None, " hebb")
print(" CONTINUOUSHEBB!")
adjustWeights(inputs, [1,-1,0,0.5], False, False, None, " hebb™)
print(" PERCEPTRON!")
adjustWeights(inputs, [1,-1,0,0.5], False, True, desired, " per ceptron”)
print(" WIDROW HOFF!")
adjustWeights(inputs, [1,-1,0,0.5], False, True, desired, " widrow")
BINARY HEBB!
NET:
3.0
NEW WEIGHTS:

120

[1,-2,1.5,0]

NET:

-1.0

NEW WEIGHTS:
[-1,0.5,2, 1.5]

NET:

0.75

NEW WEIGHTS:

[0, 1, -1, 1.5]
COMPLETE
CONTINUOUSHEBB!
NET:

30

NEW WEIGHTS:
[0.90514825364486673, -1.8102965072897335, 1.3577223804673002, 0.0]
NET:

-0.905148253645
NEW WEIGHTS:

[-0.42401264054072996, 0.21200632027036498, 0.84802528108145991,
0.63601896081109488]

NET:

0.318009480406

NEW WEIGHTS:

[0.0, 0.15767814164392502, -0.15767814164392502, 0.23651721246588753]
COMPLETE

PERCEPTRON!

NET:

3.0

NEW WEIGHTS:

[0,0,0.0,0]

121

NET:

0.0

NEW WEIGHTS:

[2,-1.0,-4,-3.0]

NET:

-15

NEW WEIGHTS:
[0, 2, -2, 3.0]

COMPLETE

WIDROW HOFF!
NET:

30

NEW WEIGHTS:
[-2.0,4.0,-3.0,-0.0]
NET:

20

NEW WEIGHTS:
[0.0, -0.0, -0.0, -0.0]
NET:

0.0

NEW WEIGHTS:
[0.0,1.0,-1.0, 1.5]
COMPLETE

6.2_ PERCEPTRON
Perceptron is aneural network unit (an artificial neuron) that does certain computations to detect

features or business intelligence in the input data. And this will give you an in-depth knowledge
of Perceptron and its activation functions.

122

https://www.simplilearn.com/what-is-business-intelligence-article

Perceptron (1957)

/! 7 s
/o f \
v f \
§ (s |
Ve - Y 4
| ,: p ,.- B
r'y\\' / Frank Rosenblace
o ST 2t (1028 1971)
S “
Oviginal Perceproon
W , ; wi
(Frme Forvnptome by ML Mywdy ond S Pypen
won Comdodon, MAMIT Pross Cgrovight 19
by MEY Pres 2
Simglfoex] mexdel;)

Perceptron was introduced by Frank Rosenblatt in 1957. He proposed a Perceptron learning rule
based on the original MCP neuron. A Perceptron is an algorithm for supervised learning of
binary classifiers. This agorithm enables neurons to learn and processes elements in the training
set one at atime.

Inputs Weights Net input Activation

— function function
(] —
__{/K\/wo b

.i)—(w 1\'
o2 o/ output
R
N W
(x)
\"2 /. =
: { Wm J
¥ /_./
\ X/

There are two types of Perceptrons. Single layer and Multilayer.

o Singlelayer - Single layer perceptrons can learn only linearly separable patterns

o Multilayer - Multilayer perceptrons or feedforward neural networks with two or more layers
have the greater processing power

The Perceptron algorithm learns the weights for the input signals to draw a linear decision
boundary.

This enables you to distinguish between the two linearly separable classes +1 and -1.

123

6.2.1 Perceptron Learning Rule

Perceptron Learning Rule states that the algorithm would automatically learn the optimal weight
coefficients. The input features are then multiplied with these weights to determine if a neuron
firesor not.

N N W) Error

output

(5
1
&

:‘ xz ?’J__.:/‘ Kut irgrat Acttvaban
_ %/ . .fW N finctos usction
PER R

R /\ Perceptron rule,

The Perceptron receives multiple input signals, and if the sum of the input signals exceeds a
certain threshold, it either outputs a signal or does not return an output. In the context of
supervised learning and classification, this can then be used to predict the class of a sample.

6.2.2 Perceptron Function
Perceptron is a function that maps its input “x,” which is multiplied with the learned weight
coefficient; an output value "f(x)”is generated.

f(z) { 1 fw-z+b>0

0 otherwise

In the equation given above:

e “w” =vector of real-valued weights

o “b” =bias(an element that adjusts the boundary away from origin without any dependence on
the input value)

e “x” =vector of input x values

‘.\
> Wi T;
e

i=1

e “m” = number of inputs to the Perceptron

124

The output can be represented as “1” or “0.” It can also be represented as “1”” or “~-1” depending
on which activation function is used.

Let uslearn the inputs of aperceptron in the next section.

6.2.3 Inputs of a Perceptron

A Perceptron accepts inputs, moderates them with certain weight values, then applies the
transformation function to output the final result. The image below shows a Perceptron with a
Boolean output.

\ }/\,WLH — II Error ll
‘i‘/r_‘ > — Output
— (W,
\ % / \:/

(W,

A~
\ "m)/\ Perceptron rule.

-~

A Boolean output is based on inputs such as salaried, married, age, past credit profile, etc. It has
only two values: Yes and No or True and False. The summation function “}” multiplies all
inputs of “x” by weights “w” and then adds them up as follows:

wo + WXy + waxy 4 T WeX,
In the next section, let us discuss the activation functions of perceptrons.

Activation Functions of Perceptron
The activation function applies a step rule (convert the numerical output into +1 or -1) to check if
the output of the weighting function is greater than zero or not.

T"l " 8y
| 1 1
’ 0] - J——.
1 -. In. hl
1
Step Function Slzn Function Skgroeld Function

125

For example:

If 3 wixi> 0 =>then final output “o0” =1 (issue bank loan)
Else, final output “o0” = -1 (deny bank |oan)

Step function gets triggered above a certain value of the neuron output; else it outputs zero. Sign
Function outputs +1 or -1 depending on whether neuron output is greater than zero or not.
Sigmoid is the S-curve and outputs a value between 0 and 1.

Output of Perceptron
Perceptron with a Boolean output:

Inputs: x1...xn
Output: o(x1....xn)

| if wo+wixy +waxa+--+ux, >0

OEXY s v) = .
al 7 1 -1 otherwise

Weights: wi=> contribution of input xi to the Perceptron output;

w0=> bias or threshold

If >w.x >0, output is+1, else-1. The neuron gets triggered only when weighted input reaches a
certain threshold value.

olx)=seniw-x)

lify>4
-1 otherwise
An output of +1 specifies that the neuron is triggered. An output of -1 specifies that the neuron
did not get triggered.
“sgn” stands for sign function with output +1 or -1.

sgn(y) =

6.2.4 Error in Perceptron
In the Perceptron Learning Rule, the predicted output is compared with the known output. If it
does not match, the error is propagated backward to allow weight adjustment to happen.

L et us discuss the decision function of Perceptron in the next section.

Perceptron has the following characteristics.

126

o Perceptron is an algorithm for Supervised Learning of single layer binary linear classifiers.

o Optima weight coefficients are automatically learned.

o Waeights are multiplied with the input features and decision is made if the neuronisfired or
not.

o Activation function applies a step rule to check if the output of the weighting function is
greater than zero.

o Linear decision boundary is drawn enabling the distinction between the two linearly separable
classes +1 and -1.

o If the sum of theinput signals exceeds a certain threshold, it outputs asignal; otherwise, there
IS O outpui.

Types of activation functions include the sign, step, and sigmoid functions.

Implement L ogic Gates with Perceptron

Based on thislogic, logic gates can be categorized into seven types.

« AND
« NAND
« OR

« NOR
« NOT

« XOR
« XNOR

Implementing Basic Logic Gates With Perceptron
Thelogic gates that can be implemented with Perceptron are discussed below.

6.2.4.1 AND

If the two inputs are TRUE (+1), the output of Perceptron is positive, which amountsto TRUE.
Thisisthe desired behavior of an AND gate.

x1= 1 (TRUE), x2= 1 (TRUE)

w0=-8,wl=05w2=05

=>0(x1, x2) =>-8+05*1+051=0.2>0

6.2.4.2 OR
If either of the two inputs are TRUE (+1), the output of Perceptron is positive, which amounts to
TRUE.

Thisisthe desired behavior of an OR gate.

127

x1 =1 (TRUE), x2 = 0 (FALSE)

w0=-3,wl=05w2=05
=>0(x1,x2) =>-3+05*1+05*0=0.2>0

6.2.4.3 XOR
A XOR gate, also called as Exclusive OR gate, has two inputs and one outpui.

;‘A@a

The gate returns a TRUE as the output if and ONLY if one of the input statesistrue.

XOR Truth Table
Input Output
A B
0 0 0
0 1 1
1 0 1
1 1 0

XOR Gatewith Neural Networks
Unlike the AND and OR gate, an XOR gate requires an intermediate hidden layer for
preliminary transformation in order to achieve the logic of an XOR gate.

128

An XOR gate assigns weights so that XOR conditions are met. It cannot be implemented with a
single layer Perceptron and requires Multi-layer Perceptron or MLP.

H represents the hidden layer, which allows X OR implementation.

11, 12, H3, H4, O5are 0 (FALSE) or 1 (TRUE)

t3= threshold for H3; t4= threshold for H4; t5= threshold for O5

H3=sigmoid (11* w13+ 12*w23-t3); H4=sigmoid (I11* w14+ |2* w24-t4)

O5= sigmoid (H3* w35+ H4*w45-15);

6.3_ADALINE
Known as Adaptive Linear Neuron
Adalineis anetwork with asingle linear unit
The Adaline network is trained using the deltarule

INPUT ADALINE ADALINE OUTPUT
URITS UNITS NITS UNIT

Adaline Madaline neural network

129

https://i1.wp.com/blog.oureducation.in/wp-content/uploads/2013/05/Adaline-Madaline.jpg?ssl=1

6.3.1 Architecture

As dready stated Adaline is a single-unit neuron, which receives input from several units and
also from one unit, called bias. An Adeline model consists of trainable weights. The inputs are of
two values (+1 or -1) and the weights have signs (positive or negative).

Initially random weights are assigned. The net input calculated is applied to a quantizer transfer
function (possibly activation function) that restores the output to +1 or -1. The Adaline model
compares the actual output with the target output and with the bias and the adjusts all the weights.

6.3.2 Training Algorithm

The Adaline network training algorithm is as follows:

Step0: weights and bias are to be set to some random values but not zero. Set the learning rate
parameter a.

Stepl: perform steps 2-6 when stopping condition isfalse.
Step2: perform steps 3-5 for each bipolar training pair s:t
Step3: set activations foe input unitsi=1to n.

Step4: calculate the net input to the output unit.

Step5: update the weight and biasfor i=1ton

Step6: if the highest weight change that occurred during training is smaller than a specified
tolerance then stop the training process, else continue. Thisis the test for the stopping condition
of anetwork.

6.3.3 Testing Algorithm

It is very essential to perform the testing of a network that has been trained. When the training
has been completed, the Adaline can be used to classify input patterns. A step function is used to
test the performance of the network. The testing procedure for the Adaline network is as follows:

StepO: initialize the weights. (The weights are obtained from the training algorithm.)
Stepl: perform steps 2-4 for each bipolar input vector x.
Step2: set the activations of the input unitsto x.
Step3: calculate the net input to the output units
Step4: apply the activation function over the net input calcul ated.
The following represents the working of Adaline machine learning algorithm based on the

above diagram:

« Net Input function - Combination of Input signals of different strength (weights):
Input signals of different strength (weights) get combined / added in order to be fed into

130

the activation function. The combined input or sum of weighted inputs can also be called
asnet input. Pay attention to the Net-input function shown in the above diagram

Net input is fed into activation function (Linear): Net input is fed into activation
function. The activation function of adaline is an identity function. If Z is net input, the
identity function would look like \(g(Z) = Z\). The activation function is linear activation
function as the output of the function is linear combination of input signals and weights.
Activation function output is used to learn weights: The output of activation function
(same as net input owing to identity function) is used to calculate the change in weights
related to different inputs which will be updated to learn new weights. Pay attention to
feedback loop shown with text Error or cost. Recall that in Perceptron, the activation
function is a unit step function and the output is binary (1 or 0) based on whether the net
input value is greater than or equal to zero (0) or otherwise.

Threshold function - Binary prediction (1 or 0) based on unit step function: The
prediction made by Adaline neuron is done in the same manner as in case of Perceptron.
The output of activation function, which is net input is compared with 0 and the output is
1 or O depending upon whether the net input is greater than or equal to 0. Pay attention in
the above diagram as to how the output of activation function is fed into threshold
function.

6.3.4 Adaline Python I mplementation

The adaline algorithm explained in previous section with the help of diagram will be illustrated
further with the help of Python code. Here are the agorithm steps and the related Python
implementation:

Weighted input signals combined as net input: The first step is to combine the input
signals with respective weights (strength of input signals) and come up with sum of
weighted inputs. Thisis also termed as net input.

Net Input is sum of weighted input signals

def net_input(self, X):

weighted sum = np.dot(X, self.coef [1:]) + self.coef [0]

return weighted _sum

131

« Activation function invoked with net input: Net input is fed into activation function to
calculate the output. The activation function is a linear activation function. It is an
identity function. Thus, \(g(Z) = Z\). Note that the output or return value of activation
function is same as input (identity function)

Activation function is fed the net input. As the activation function is
an identity function, the output from activation function is same asthe
input to the function.
def activation_function(self, X):

return X

o Prediction based on unit step function: Prediction is made based on the unit step
function which provides binary output as 1 or 0 based on whether the output of the
activation function is greater than or equal to zero. If the output of the activation function
is greater than or equal to zero, the predictionis 1 or else 0. Note how activation function
isinvoked with net input and the output of activation function is compared with O.

Prediction is made based on the output of the activation function

def predict(self, X):
return np.where(self.activation _function(self.net_input(X)) >=0.0, 1, 0)

e Waeights learned using activation function output (continuous value): Unlike
Perceptron where weights are learned based on the prediction value which is derived as
out of unit step function, the weights in case of Adaline is learned by comparing the
actual / expected value with the out of activation function which is a continuous value.
Note that the weights are learned based on batch gradient descent algorithm which
requires the weights to be updated after considering the weight updates related to all

132

training examples. Thisisunlike stochastic gradient descent where weights are updated
after each training example.

Batch Gradient Descent

1. Weights are updated considering all training examples.
2. Learning of weights can continue for multiple iterations
3. Learning rate needsto be defined

def fit(self, X, y):
rgen = np.random.RandomState(self.random_state)
self.coef =rgen.normal (loc=0.0, scale=0.01, size=1 + X.shape[1])
for _inrange(salf.n_iterations):
activation_function_output = sdlf.activation_function(self.net_input(X))
errors =y - activation_function_output
self.coef [1:] =self.coef [1:] + self.learning_rate* X.T.dot(errors)

self.coef [0] = self.coef [0] + self.learning_rate* errors.sum()

Hereisthe entire Python code of Adaline agorithm custom implementation:
class CustomAdaline(object):
def _init_(self, n_iterations=100, random_state=1, learning_rate=0.01):
self.n_iterations = n_iterations
self.random_state = random_state

self.learning_rate = learning_rate

133

Batch Gradient Descent
1. Weights are updated considering all training examples.

2. Learning of weights can continue for multiple iterations
3. Learning rate needsto be defined

def fit(self, X, y):
rgen = np.random.RandomState(self.random_state)
self.coef =rgen.normal (loc=0.0, scale=0.01, size=1 + X.shape[1])
for _inrange(sdlf.n_iterations):
activation_function_output = self.activation_function(self.net_input(X))
errors =y - activation_function_output
self.coef [1:] =self.coef [1:] + self.learning_rate* X.T.dot(errors)

self.coef [0] = self.coef [Q] + self.learning_rate* errors.sum()

Net Input is sum of weighted input signals

def net_input(salf, X):

weighted sum =np.dot(X, self.coef [1:]) + self.coef [O]

return weighted _sum

134

Activation function is fed the net input. Asthe activation function is an identity function, the
output from activation function is same as the

input to the function.
def activation_function(self, X):
return X

Prediction ismade on the basis of output of activation function
def predict(self, X):
return np.where(self.activation_function(self.net_input(X)) >= 0.0, 1, 0)
Model scoreiscalculated based on comparison of
expected value and predicted value
def score(sdlf, X, y):
misclassified data count =0
for xi, target in zip(X, y):
output = self.predict(xi)
if(target '= output):
misclassified data count +=1

total_data count = len(X)

135

self.score = (total _data count - misclassified data count)/total _data count

return self.score

64 CONCLUSIONS

Here is the summary of what you learned in this post about Adaline algorithm and its Python
implementation:

Adaline a gorithm mimics aneuron in the human brain

Adaline is similar to the algorithm Perceptron. It can aso be termed as a single-layer
neura network.

The difference between Adaline and Perceptron lies in the manner in which weights are
learned based on the differences between the output label and the continuous value output

of the activation function. In Perceptron, the difference between an actual label and a
predicted label is used to learn the weights.

136

MACHINE LEARNING

UNIT VII: MULTIPLE ADAPTIVE LINEAR NEURON (MADALINE)

STRUCTURE

7.0 Objectives
7.1 Introduction
7.1.1 Architecture
7.1.2 Training Algorithm
7.2 Backpropagation Algorithm
7.2.1 Wheat Seeds Dataset
7.3 Initialize Network
7.3.1 Forward Propagate

7.3.2 Neuron Activation
7.3.3 Neuron Transfer
7.3.4 Forward Propagation

7.3.5 Back Propagate Error
7.4 Train Network
7.5 Predict
7.6 Backpropagation Algorithm to the Wheat Seeds Dataset
7.7 Summary
7.7 Practice Excercises

137

7.0 OBJECTIVES

e Understanding MADALINE, ITS : architecture, algorithm, application for XOR
problem

e Understanding Backpropagation Neural Network, its architecture, parameters, algorithm,
applications and different issues regarding convergence

1.1 INTRODUCTION

Madaline which stands for Multiple Adaptive Linear Neuron is a network that consists of many
Adalinesin parallel. It will have a single output unit. Some important points about Madaline are
as follows —

o Itisjust likeamultilayer perceptron, where Adaline will act as a hidden unit between the
input and the Madaline layer.

« Theweights and the bias between the input and Adaline layers, as we seein the Adaline
architecture, are adjustable.

o TheAdaline and Madaline layers have fixed weights and a bias of 1.
« Training can be done with the help of the Deltarule.

7.1.1 Architecture

The architecture of Madaline consists of “n” neurons of the input layer, “m” neurons of the
Adaline layer, and 1 neuron of the Madaline layer. The Adaline layer can be considered as the
hidden layer as it is between the input layer and the output layer, i.e. the Madaline layer.

I - T |
- e b
= e)
| w1 N 5
M Py T ¥ O b, "
ot N S o 1 % - 1, 1
| L i T, ol \
1 r b i
1 " " o oy .
(e LSS ot
I ¥ 1
e e _.-4/!
e e .\,qu_.-' i,) =
! e) Var
i iy
L -
——- W [T N, il
| i ol W ¥ o
—_— - il 4

7.1.2 Training Algorithm

By now we know that only the weights and bias between the input and the Adaline layer areto
be adjusted, and the weights and bias between the Adaline and the Madaline layer are fixed.

Step 1 — Initialize the following to start the training —

o Waeights

138

e Bias
e Learningrate ao

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate
must be set equal to 1.

Step 2 — Continue steps 3-8 when the stopping condition is not true.
Step 3 — Continue step 4-7 for every bipolar training pair s:t.

Step 4 — Activate each input unit as follows —
xi=d(i=1ton)xi=si(i=1ton)

Step 5— Obtain the net input at each hidden layer, i.e. the Adaline layer with the following

relation —
Qinj=bj+) inxiwijj=1tomQinj=bj+) inxiwijj=1tom
Here,,b* ishiasand ,,n* isthetota number of input neurons.

Step 6 — Apply the following activation function to obtain the final output at the Adaline and
the Madaline layer —

f(x)={ 1-1ifx>0ifx<0f (x)={ 1ifx=0—1ifx<0
Output at the hidden (Adaline) unit
Qj=f(Qinj)Qj=f(Qinj)

Final output of the network
y=f(yin)y=f(yin)

i.e. yinj=b0+> mj=1Qjvjyinj=b0+> j=1mQjvj

Step 7 — Calculate the error and adjust the weights as follows —

Casel—ify#tandt =1then,
wij(new)=wij(old)+a(1—Qinj)xiwij(new)=wij(old)+a(1-Qinj)xi
bj(new)=bj(old)+a(1-Qinj)bj(new)=bj(old)+a(1-Qinj)

In this case, the weights would be updated on Q; where the net input is close to 0 becauset = 1.
Case2—ify#tandt =-1then,
wik(new)=wik(old)+a(—1—Qink)xiwik(new)=wik(old)+a(—1—Qink)xi
bk(new)=bk(old)+a(—1-Qink)bk(new)=bk(old)+a(—1-Qink)

In this case, the weights would be updated on Qk where the net input is positive becauset = -1.

139

Here,,y* isthe actua output and ,,t* isthe desired/target outpui.
Case3-ify =t then
There would be no change in weights.

Step 8 — Test for the stopping condition, which will happen when there is no change in weight
or the highest weight change occurred during training is smaller than the specified tolerance.

72 BACKPROPAGATION ALGORITHM

The Backpropagation algorithm is a supervised learning method for multilayer feedforward
networks from the field of Artificial Neural Networks. Feed-forward neura networks are
inspired by the information processing of one or more neura cells, called a neuron. A neuron
accepts input signals viaits dendrites, which pass the electrical signal down to the cell body. The
axon carries the signal out to synapses, which are the connections of a cell’s axon to other cell’s
dendrites.

The principle of the backpropagation approach is to model a given function by modifying
internal weightings of input signals to produce an expected output signal. The system is trained
using a supervised learning method, where the error between the system’s output and a known
expected output is presented to the system and used to modify itsinternal state.

Technically, the backpropagation algorithm is a method for training the weights in a multilayer
feed-forward neura network. As such, it requires a network structure to be defined of one or
more layers where one layer is fully connected to the next layer. A standard network structureis
oneinput layer, one hidden layer, and one output layer.

Backpropagation can be used for both classification and regression problems, but we will focus
on classification in this tutorial. In classification problems, best results are achieved when the
network has one neuron in the output layer for each class value. For example, a 2-class or binary
classification problem with the class values of A and B. These expected outputs would have to
be transformed into binary vectors with one column for each class value. Such as[1, 0] and [O, 1]
for A and B respectively. Thisis called a one hot encoding.

7.2.1 Wheat Seeds Dataset
The seeds dataset involves the prediction of species given measurements seeds from different

varieties of wheat.

There are 201 records and 7 numerica input variables. It is a classification problem with 3
output classes. The scale for each numeric input value vary, so some data normalization may be
required for use with algorithms that weight inputs like the backpropagation algorithm.

140

Below isasample of the first 5 rows of the dataset.

115.26,14.84,0.871,5.763,3.312,2.221,5.22,1
2 14.88,14.57,0.8811,5.554,3.333,1.018,4.956,1
3 14.29,14.09,0.905,5.291,3.337,2.699,4.825,1

4 13.84,13.94,0.8955,5.324,3.379,2.259,4.805,1
516.14,14.99,0.9034,5.658,3.562,1.355,5.175,1

Using the Zero Rule agorithm that predicts the most common class value, the baseline accuracy
for the problem is 28.095%.

Y ou can learn more and download the seeds dataset from the UCI Machine Learning Repository.
Download the seeds dataset and place it into your current working directory with the
filename seeds _dataset.csv.This section is broken down into 6 parts:

Initialize Network.

Forward Propagate.

Back Propagate Error.

Train Network.

Predict.

Seeds Dataset Case Study.

These steps will provide the foundation that you need to implement the backpropagation
algorithm from scratch and apply it to your own predictive modeling problems.

© ks~ wbdpE

L3 INITIALIZE NETWORK

Let’s start with something easy, the creation of a new network ready for training.

Each neuron has a set of weights that need to be maintained. One weight for each input
connection and an additional weight for the bias. We will need to store additional properties for a
neuron during training, therefore we will use a dictionary to represent each neuron and store
properties by names such as ‘weights’ for the weights.

A network is organized into layers. The input layer is really just arow from our training dataset.
The first real layer is the hidden layer. This is followed by the output layer that has one neuron
for each class value.

We will organize layers as arrays of dictionaries and treat the whole network as an array of
layers.

It is good practice to initialize the network weights to small random numbers. In this case, will
we use random numbersin the range of O to 1.

141

https://archive.ics.uci.edu/ml/datasets/seeds

Below is a function named initialize network() that creates a new neura network ready for
training. It accepts three parameters, the number of inputs, the number of neurons to have in the
hidden layer and the number of outputs.

Y ou can see that for the hidden layer we create n_hidden neurons and each neuron in the hidden
layer has n_inputs + 1 weights, one for each input column in a dataset and an additional one for
the bias.

You can aso see that the output layer that connects to the hidden layer has n_outputs neurons,
each with n_hidden + 1 weights. This means that each neuron in the output layer connects to
(has aweight for) each neuron in the hidden layer.

Initialize a network
def initialize_network(n_inputs, n_hidden, n_outputs):
network = list()

hidden_layer = [{'weights:[random() for i inrange(n_inputs+ 1)]} foriin
range(n_hidden)]

network.append(hidden_layer)

output_layer = [{'weights:[random() for i in range(n_hidden + 1)]} fori in
range(n_outputs)]

network.append(output_layer)
return network

Let’s test out thisfunction. Below is acomplete example that creates asmall network.

from random import seed

from random import random

Initialize a network
def initialize_network(n_inputs, n_hidden, n_outputs):
network = list()

hidden_layer = [{'weights:[random() for i in range(n_inputs+ 1)]} foriin
range(n_hidden)]

network.append(hidden_layer)

output_layer = [{‘'weights:[random() for i in range(n_hidden + 1)]} fori in

142

range(n_outputs)]
network.append(output_layer)

return network

seed(1)
network =initialize_network(2, 1, 2)
for layer in network:

print(layer)

Running the example, you can see that the code prints out each layer one by one. Y ou can see the

hidden layer has one neuron with 2 input weights plus the bias. The output layer has 2 neurons,

each with 1 weight plus the bias.

1 [{‘weights [0.13436424411240122, 0.8474337369372327, 0.763774618976614]}]

5 [{'weights: [0.2550690257394217, 0.49543508709194095]}, {'weights"
[0.4494910647887381, 0.651592972722763]}]

Now that we know how to create and initialize a network, let’s see how we can use it to calculate
an output.

7.3.1 Forward Propagate

We can calculate an output from a neural network by propagating an input signa through each
layer until the output layer outputs its values.

We call this forward-propagation.

It is the technique we will need to generate predictions during training that will need to be
corrected, and it is the method we will need after the network is trained to make predictions on
new data.

We can break forward propagation down into three parts:

1. Neuron Activation.
2. Neuron Transfer.
3. Forward Propagation.

143

7.3.2 Neuron Activation

Thefirst step isto calculate the activation of one neuron given an inpuit.

The input could be arow from our training dataset, as in the case of the hidden layer. It may also
be the outputs from each neuron in the hidden layer, in the case of the output layer.

Neuron activation is calculated as the weighted sum of the inputs. Much like linear regression.
1 activation = sum(weight_i * input_i) + bias

Where weight is a network weight, input is an input, i is the index of a weight or an input
and bias is a specia weight that has no input to multiply with (or you can think of the input as
always being 1.0).

Below is an implementation of thisin afunction named activate(). Y ou can see that the function
assumes that the bias is the last weight in the list of weights. This helps here and later to make
the code easier to read.

Calculate neuron activation for an input
def activate(weights, inputs):
activation = weightg[-1]
for i in range(len(weights)-1):
activation +=weightg[i] * inputg[i]
return activation

Now, let’s see how to use the neuron activation.

7.3.3 Neuron Transfer
Once a neuron is activated, we need to transfer the activation to see what the neuron output
actually is.

Different transfer functions can be used. It is traditional to use the sigmoid activation function,
but you can also use the tanh (hyperbolic tangent) function to transfer outputs. More recently,
the rectifier transfer function has been popular with large deep learning networks.

The sigmoid activation function looks like an S shape, it’s also called the logistic function. It can
take any input value and produce a number between 0 and 1 on an S-curve. It is also a function
of which we can easily calculate the derivative (slope) that we will need later when
backpropagating error.

We can transfer an activation function using the sigmoid function as follows:

144

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Hyperbolic_function
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

output = 1/ (1 + e*(-activation))

Where e is the base of the natural logarithms (Euler’s number).
Below isafunction named transfer () that implements the sigmoid equation.

Transfer neuron activation
def transfer(activation):
return 1.0/ (1.0 + exp(-activation))

Now that we have the pieces, let’s see how they are used.

7.3.4 Forward Propagation

Forward propagating an input is straightforward.
We work through each layer of our network calculating the outputs for each neuron. All of the
outputs from one layer become inputs to the neurons on the next layer.

Below is afunction named forward_propagate() that implements the forward propagation for a
row of datafrom our dataset with our neural network.

Y ou can see that aneuron’s output value is stored in the neuron with the name ‘output‘. You can
also see that we collect the outputs for a layer in an array named new_inputs that becomes the
array inputs and is used as inputs for the following layer.

The function returns the outputs from the last layer also called the output layer.

Forward propagate input to a network output

def forward_propagate(network, row):
inputs = row

for layer in network:
new_inputs =[]
for neuronin layer:
activation = activate(neuron['weights], inputs)
neuron['output’] = transfer(activation)
new_inputs.append(neuron[‘output’])
inputs = new_inputs
return inputs

Let’s put all of these pieces together and test out the forward propagation of our network.

145

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Running the example propagates the input pattern [1, O] and produces an output value that is
printed. Because the output layer has two neurons, we get alist of two numbers as output.

The actual output values are just nonsense for now, but next, we will start to learn how to make
the weights in the neurons more useful.

[0.6629970129852887, 0.7253160725279748]
7.3.5 Back Propagate Error

The backpropagation algorithm is named for how weights are trained.

Error is calculated between the expected outputs and the outputs forward propagated from the
network. These errors are then propagated backward through the network from the output layer
to the hidden layer, assigning blame for the error and updating weights as they go.

The math for backpropagating error is rooted in calculus, but we will remain high level in this
section and focus on what is calculated and how rather than why the calculations take this
particular form.

This part is broken down into two sections.

1. Transfer Derivative.
2. Error Backpropagation.

7.3.5.1 Transfer Derivative
Given an output value from a neuron, we need to calculate its slope.

We are using the sigmoid transfer function, the derivative of which can be calculated as follows:
derivative = output * (1.0 - output)
Below isafunction named transfer _derivative() that implements this equation.

Calculate the derivative of an neuron output
def transfer_derivative(output):
return output * (1.0 - output)

Now, let’s see how this can be used.

7.3.5.2 Error Backpropagation

The first step is to calculate the error for each output neuron, this will give us our error signal
(input) to propagate backwards through the network.

146

Theerror for a given neuron can be calculated as follows:
error = (expected - output) * transfer_derivative(output)

Where expected is the expected output value for the neuron, output is the output value for the
neuron and transfer_derivative() calculates the slope of the neuron’s output value, as shown
above.

This error calculation is used for neurons in the output layer. The expected value is the class
value itself. In the hidden layer, things are alittle more complicated.

The error signal for a neuron in the hidden layer is calculated as the weighted error of each
neuron in the output layer. Think of the error traveling back aong the weights of the output layer
to the neuronsin the hidden layer.

The back-propagated error signal is accumulated and then used to determine the error for the
neuron in the hidden layer, as follows:

error = (weight_k * error_j) * transfer_derivative(output)

Where error_j isthe error signal from the jth neuron in the output layer, weight_k is the weight
that connects the kth neuron to the current neuron and output is the output for the current neuron.
Below is afunction named backward_propagate _error() that implements this procedure.

You can see that the error signal calculated for each neuron is stored with the name ‘delta’. You
can see that the layers of the network are iterated in reverse order, starting at the output and
working backward. This ensures that the neurons in the output layer have ‘delta’ values
calculated first that neurons in the hidden layer can use in the subsequent iteration. | chose the
name ‘delta’ to reflect the change the error implies on the neuron (e.g. the weight delta).

Y ou can see that the error signal for neurons in the hidden layer is accumulated from neurons in
the output layer where the hidden neuron number j is aso theindex of the neuron’s weight in the
output layer neuron|[,,weights“][j].

Backpropagate error and store in neurons
def backward_propagate _error(network, expected):
for i in reversed(range(len(network))):
layer = network(i]
errors = list()
if i I=len(network)-1:

for j in range(len(layer)):

147

error =0.0
for neuron in network[i + 1]:
error += (neuron['weights][j] * neuron['delta])
errors.append(error)
ese
for j in range(len(layer)):
neuron = layer(j]
errors.append(expected[j] - neuron[‘output’])
forj inrange(len(layer)):
neuron = layer[j]
neuron['delta] = errorg[j] * transfer_derivative(neuron['output)

Let’s put all of the pieces together and see how it works.
Explore yourself by combining all together.

We define a fixed neural network with output values and backpropagate an expected output
pattern. The complete exampleis listed below.

Calculate the derivative of aneuron output
def transfer_derivative(output):

return output * (1.0 - output)

Backpropagate error and store in neurons
def backward_propagate _error(network, expected):
for i in reversed(range(len(network))):
layer = network(i]
errors = list()
if i I=len(network)-1:

for j in range(len(layer)):

148

error =0.0
for neuron in network[i + 1]:
error += (neuron['weights][j] * neuron['delta])
errors.append(error)
ese
for j in range(len(layer)):
neuron = layer(j]
errors.append(expected[j] - neuron[‘output’])
for j in range(len(layer)):
neuron = layer[j]

neuron['delta] = errorg[j] * transfer_derivative(neuron[‘output’])

test backpropagation of error

network = [[{‘output: 0.7105668883115941, ‘weights: [0.13436424411240122,
0.8474337369372327, 0.763774618976614]}],

[{'output: 0.6213859615555266, 'weights: [0.2550690257394217,
0.49543508709194005]}, {'output’; 0.6573693455986976, ‘weights’: [0.4494910647887381,
0.651592972722763]}]]

expected = [0, 1]
backward propagate error(network, expected)
for layer in network:

print(layer)

Running the example prints the network after the backpropagation of error is complete. Y ou can
see that error values are calculated and stored in the neurons for the output layer and the hidden

layer.

[{'output’: 0.7105668883115941, ‘weights: [0.13436424411240122, 0.8474337369372327,
1 0.763774618976614], ‘'delta’; -0.0005348048046610517}

2 [{'output’: 0.6213859615555266, ‘weights: [0.2550600257394217, 0.49543508709194095],
delta: -0.14619064683582808), {'output: 0.6573693455986976, ‘weights:

149

[0.4494910647887381, 0.651592972722763], 'delta: 0.0771723774346327}]

Now let’s use the backpropagation of error to train the network.

74_TRAIN NETWORK

The network is trained using stochastic gradient descent.

This involves multiple iterations of exposing a training dataset to the network and for each row
of data forward propagating the inputs, backpropagating the error and updating the network
weights.

This part is broken down into two sections:

1. Update Weights.
2. Train Network.

7.4.1 Update Weights
Once errors are calculated for each neuron in the network via the back propagation method
above, they can be used to update weights.

Network weights are updated as follows:
weight = weight + learning_rate * error * input

Where weight isagiven weight, learning_rate is a parameter that you must specify, error isthe
error calculated by the backpropagation procedure for the neuron and input is the input value
that caused the error.

The same procedure can be used for updating the bias weight, except there is no input term, or
input is the fixed value of 1.0.

Learning rate controls how much to change the weight to correct for the error. For example, a
value of 0.1 will update the weight 10% of the amount that it possibly could be updated. Small
learning rates are preferred that cause slower learning over alarge number of training iterations.
This increases the likelihood of the network finding a good set of weights across al layers rather
than the fastest set of weights that minimize error (called premature convergence).

Below is a function named update weights() that updates the weights for a network given an
input row of data, a learning rate and assume that a forward and backward propagation have
already been performed.

Remember that the input for the output layer is a collection of outputs from the hidden layer.

Update network weights with error

150

def update weights(network, row, |_rate):
for i in range(len(network)):

inputs=row[:-1]

ifi!=0:
inputs = [neuron['output’] for neuron in network][i - 1]]

for neuron in network[i]:
for j in range(len(inputs)):

neuron[‘'weights][j] +=1_rate* neuron['delta] * inputg[j]

neuron[‘'weights][-1] +=1_rate* neuron['delta]

Now we know how to update network weights, let’s see how we can do it repeatedly.

7.4.2 Train Network
Asmentioned, the network is updated using stochastic gradient descent.

This involves first looping for a fixed number of epochs and within each epoch updating the
network for each row in the training dataset.

Because updates are made for each training pattern, this type of learning is called online learning.
If errors were accumulated across an epoch before updating the weights, this is caled batch
learning or batch gradient descent.

Below is a function that implements the training of an already initialized neural network with a
given training dataset, learning rate, fixed number of epochs and an expected number of output
values.

The expected number of output values is used to transform class valuesin the training datainto a
one hot encoding. That is a binary vector with one column for each class value to match the
output of the network. Thisisrequired to calcul ate the error for the output layer.

Y ou can also see that the sum squared error between the expected output and the network output
is accumulated each epoch and printed. Thisis helpful to create a trace of how much the network
islearning and improving each epoch.

Train anetwork for afixed number of epochs

def train_network(network, train, |_rate, n_epoch, n_outputs):

151

for epoch in range(n_epoch):
sum_error =0
for row in train:
outputs = forward_propagate(network, row)
expected = [0 for i in range(n_outputs)]
expected[row[-1]] =1

sum_error += sum([(expected[i]-outputs[i])**2 for i in
range(len(expected))])

backward propagate error(network, expected)
update weights(network, row, |_rate)
print(">epoch=%d, Irate=%.3f, error=%.3f' % (epoch, |_rate, sum_error))

We now have all of the piecesto train the network. We can put together an example that includes
everything we’ve seen so far including network initialization and train a network on a small
dataset.

Below isasmall contrived dataset that we can use to test out training our neural network.

X1 X2 Y
2.7810836 2.550537003 0
1.465489372 2.362125076 0
3.396561688 4.400293529 0
1.38807019 1.850220317 0
3.06407232 3.005305973 0
7.627531214 2.759262235 1
5.332441248 2.088626775 1
6.922596716 1.77106367 1
8.675418651 -0.242068655 1
7.673756466 3.508563011 1

Below is the complete example. We will use 2 neurons in the hidden layer. It is a binary
classification problem (2 classes) so there will be two neuronsin the output layer. The network

152

will be trained for 20 epochs with a learning rate of 0.5, which is high because we are training
for so few iterations.

Running the example first prints the sum sgquared error each training epoch. We can see atrend
of this error decreasing with each epoch.

Once trained, the network is printed, showing the learned weights. Also till in the network are
output and delta values that can be ignored. We could update our training function to delete these
dataif we wanted.

>epoch=0, Irate=0.500, error=6.350
>epoch=1, Irate=0.500, error=5.531
>epoch=2, Irate=0.500, error=5.221
>epoch=3, Irate=0.500, error=4.951

1

2

3

4

S >epoch=4, Irate=0.500, error=4.519
6 >epoch=5, Irate=0.500, error=4.173
7 >epoch=6, Irate=0.500, error=3.835
8 >epoch=7, Irate=0.500, error=3.506
9 >epoch=8, Irate=0.500, error=3.192
10 >epoch=9, Irate=0.500, error=2.898
11 >epoch=10, Irate=0.500, error=2.626
12 >epoch=11, Irate=0.500, error=2.377
13 >epoch=12, Irate=0.500, error=2.153
14 >epoch=13, Irate=0.500, error=1.953
15 >epoch=14, Irate=0.500, error=1.774
16 >epoch=15, Irate=0.500, error=1.614
17 >epoch=16, Irate=0.500, error=1.472
18 >epoch=17, Irate=0.500, error=1.346
19 >epoch=18, Irate=0.500, error=1.233

20 >epoch=19, Irate=0.500, error=1.132
21 [{'weights: [-1.4688375095432327, 1.850887325439514, 1.0858178629550297], ‘output"

153

22 0.029980305604426185, 'deltal: -0.0059546604162323625} , {'weights:
[0.37711098142462157, -0.0625909894552989, 0.2765123702642716], ‘output’:
0.9456229000211323, 'delta’: 0.0026279652850863837}]

[{'weights: [2.515394649397849, -0.3391927502445985, -0.9671565426390275], 'output’:
0.23648794202357587, 'delta: -0.04270059278364587}, {'weights: [-2.5584149848484263,

1.0036422106209202, 0.42383086467582715], ‘output: 0.7790535202438367, ‘'delta:
0.03803132596437354}]

Once a network istrained, we need to useit to make predictions.

1.5 PREDICT
Making predictions with atrained neural network is easy enough.

We have already seen how to forward-propagate an input pattern to get an output. Thisis all we
need to do to make a prediction. We can use the output values themselves directly as the
probability of a pattern belonging to each output class.

It may be more useful to turn this output back into a crisp class prediction. We can do this by
selecting the class value with the larger probability. Thisis also called the arg max function.
Below is a function named predict() that implements this procedure. It returns the index in the
network output that has the largest probability. It assumes that class values have been converted
to integers starting at O.

Make a prediction with a network
def predict(network, row):
outputs = forward_propagate(network, row)

return outputs.index(max(outputs))

We can put this together with our code above for forward propagating input and with our small
contrived dataset to test making predictions with an already-trained network. The example
hardcodes a network trained from the previous step.

It shows that the network achieves 100% accuracy on this small dataset.

1.6 BACKPROPAGATION ALGORITHM TO THE WHEAT SEEDSDATASET

Thefirst step isto load the dataset and convert the loaded data to numbers that we can use in our
neural network. For this we will use the helper function load csv() to load the
file, str_column_to float() to convert string numbers to floats and str_column_to_int() to
convert the class column to integer values.

154

https://en.wikipedia.org/wiki/Arg_max

Input values vary in scale and need to be normalized to the range of 0 and 1. It is generally good
practice to normalize input values to the range of the chosen transfer function, in this case, the

sigmoid function that outputs values between 0 and 1
The dataset_minmax() and normalize dataset() helper functions were used to normalize the
input values.

We will evauate the algorithm using k-fold cross-validation with 5 folds. This means that
201/5=40.2 or 40 records will be in each fold We will use the helper
functions evaluate algorithm() to evaluate the algorithm with cross-validation
and accuracy_metric() to calculate the accuracy of predictions.

A new function named back propagation() was developed to manage the application of the
Backpropagation agorithm, first initializing a network, training it on the training dataset and
then using the trained network to make predictions on a test dataset.

The complete example islisted below.

Backprop on the Seeds Dataset
from random import seed

from random import randrange
from random import random
from csv import reader

from math import exp

#Load aCSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') asfile:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
dataset.append(row)

return dataset

155

Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:

row[column] = float(row[column].strip())

Convert string column to integer
def str_column_to_int(dataset, column):
class values=[row[column] for row in dataset]
unique = set(class values)
lookup = dict()
for i, valuein enumerate(unique):
lookup[value] =i
for row in dataset:
row[column] = lookup[row[column]]

return lookup

Find the min and max valuesfor each column
def dataset_minmax(dataset):
minmax = list()
stats = [[min(column), max(column)] for column in zip(* dataset)]

return stats

Rescal e dataset columnsto therange 0-1

def normalize_dataset(dataset, minmax):

for row in dataset:

156

for i in range(len(row)-1):

row[i] = (row[i] - minmax[i][O]) / (minmax[i][1] - minmax[i][O])

Split adataset into k folds
def cross validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold size=int(len(dataset) / n_folds)
for i inrange(n_folds):
fold =list()
whilelen(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split

Calculate accuracy percentage
def accuracy metric(actua, predicted):
correct =0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1

return correct / float(len(actual)) * 100.0

Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):

157

folds=cross validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set =sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.gppend(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)

return scores

Calculate neuron activation for an input
def activate(weights, inputs):
activation = weightg[-1]
fori in range(len(weights)-1):
activation +=weightg[i] * inputg[i]

return activation

Transfer neuron activation

def transfer(activation):

158

return 1.0/ (1.0 + exp(-activation))

Forward propagate input to anetwork output
def forward_propagate(network, row):
inputs = row
for layer in network:
new_inputs =[]
for neuroninlayer:
activation = activate(neuron[‘'weights], inputs)
neuron[‘output’] = transfer(activation)
new_inputs.append(neuron[‘output’])
inputs=new_inputs

return inputs

Calculate the derivative of an neuron output
def transfer_derivative(output):

return output * (1.0 - output)

Backpropagate error and store in neurons
def backward_propagate_error(network, expected):
for i in reversed(range(len(network))):
layer = network(i]
errors = list()
if i I=len(network)-1:
forj inrange(len(layer)):

error = 0.0

159

for neuron in network[i + 1]:
error += (neuron['weights][j] * neuron['delta])
errors.append(error)
else
for j in range(len(layer)):
neuron = layer(j]
errors.append(expected[j] - neuron[‘output’])
for j in range(len(layer)):
neuron = layer[j]

neuron['delta] = errorg[j] * transfer_derivative(neuron[‘output’])

Update network weights with error
def update_weights(network, row, |_rate):
for i in range(len(network)):
inputs=row[:-1]
ifi!=0:
inputs = [neuron['output’] for neuron in network[i - 1]]
for neuron in network([i]:
for j in range(len(inputs)):
neuron[‘'weights][j] +=1_rate* neuron['delta] * inputg[j]

neuron['weights][-1] +=|_rate * neuron['delta]

Train anetwork for afixed number of epochs
def train_network(network, train, |_rate, n_epoch, n_outputs):
for epoch in range(n_epoch):

for row intrain;

160

outputs = forward_propagate(network, row)
expected =[O for i in range(n_outputs)]
expected[row[-1]] =1

backward_propagate _error(network, expected)

update weights(network, row, |_rate)

Initialize a network
def initialize_network(n_inputs, n_hidden, n_outputs):
network = list()

hidden_layer = [{‘weights:[random() for i in range(n_inputs + 1)]} for i in
range(n_hidden)]

network.append(hidden_layer)

output_layer = [{'weights:[random() for i in range(n_hidden + 1)]} for i in
range(n_outputs)]

network.append(output_layer)

return network

Make aprediction with anetwork
def predict(network, row):
outputs = forward_propagate(network, row)

return outputs.index(max(outputs))

Backpropagation Algorithm With Stochastic Gradient Descent
def back _propagation(train, test, |_rate, n_epoch, n_hidden):
n_inputs=len(train[0]) - 1
n_outputs = len(set([row[-1] for row in train]))

network = initialize_network(n_inputs, n_hidden, n_outputs)

161

train_network(network, train, |_rate, n_epoch, n_outputs)
predictions = list()
for row in test:
prediction = predict(network, row)
predictions.append(prediction)
return(predictions)

Test Backprop on Seeds dataset

seed(1)

load and prepare data

filename = 'seeds_dataset.csv'

dataset = load_csv(filename)

fori inrange(len(dataset[0])-1):
str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

normalize input variables

minmax = dataset_minmax(dataset)

normalize dataset(dataset, minmax)

evaluate algorithm

n folds=5

|_rate=0.3

n_epoch =500

n_hidden =5

scores = evaluate_algorithm(dataset, back_propagation, n_folds, | _rate, n_epoch, n_hidden)

print('Scores: %s' % scores)

162

print(‘Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

A network with 5 neurons in the hidden layer and 3 neurons in the output layer was constructed.
The network was trained for 500 epochs with alearning rate of 0.3. These parameters were found
with alittletrial and error, but you may be able to do much better.

Running the example prints the average classification accuracy on each fold as well as the
average performance across all folds.

You can see that backpropagation and the chosen configuration achieved a mean classification
accuracy of about 93% which is dramatically better than the Zero Rule a gorithm that did slightly
better than 28% accuracy.

Scores: [92.85714285714286, 92.85714285714286, 97.61904761904762,
92.857142857142816, 90.47619047619048]

Mean Accuracy: 93.333%

163

MACHINE LEARNING
UNIT VIIl: UNSUPERVISED MODELS

STRUCTURE
8.0 Objectives
8.1 Kohonen Self — Organizing Maps and its Architecture

8.2 Learning process of Self-organizing M aps (SOM)
8.3 Implementation of Self-organizing Maps
8.3.1 Implementation with Python and Tensorflow
8.3.2 Initialization
8.3.3 BMU Calculations
8.3.4 Update Weights
8.3.5 Usage
8.4 ART Introduction
8.4.1 Operating Principal
85ART 1
8.6 Algorithm
8.7 ART1 Implementation Process
8.8 Summary
8.9 Practice Questions

164

8.0 Objectives

Understanding unsupervised models: Kohonen Self —Organizing Maps, its architecture,
algorithm, application. Adaptive Resonance Theory, Its basic basic architecture and operation

8.1 KOHONEN SELF-ORGANIZING MAPSAND ITSARCHITECTURE
Degpite the fact that the early ideas for this sort of network can be followed back to 1981, they

were created and formalized in 1992 by Teuvo Kohonen, an educator of the Academy of Finland.
In a quintessence, they are utilizing vector quantization to distinguish designs in

multidimensional information and address them in many lower-dimensional spaces.

However it may take a new viewpoint on these networks and overlook standard
neuron/association and loads ideas. These networks are utilizing similar terms however they

have an alternate significance in their domain.

These networks are also known as maps. They resembles as sheet-like neura network, in which
neurons are initiated by different patternsin input signals. Investigate the image beneath:

Map Map Mg
Newovn Neursn Neuron
Map Map Mag
Newom Neuran Neuron
Map Moy Magp
Newron Neuran Neuror

Here we can see a straightforward self-organizing structure. The features are represented by two

input neurons. This additionaly implies that our input data can be addressed by three-
dimensional vectors. Above them, map neurons are there. The objective of these neurons is to
introduce information expected on input neurons as two-dimensional information. This means,
that in this model self-organizing map utilizes unsupervised learning to convert 3-D data to 2-D

representation

165

We can have quite a few dimensions in our provided data and quite a few dimensions for our
yield (expected) information. Notice that each map neuron is associated with each input neuron
and that map neurons are not associated with one another. SO the adjacent map neurons are

unaware of their neighbor values

A

Every association has a weight connected to it, yet they are not utilized smilarly as in
feedforward networks. Fundamentally, you can see that weights are presently addressing the
association of the mapping neuron with the input vector. Each map neuron can be distinguished
by remarkable |,] coordinates, and weights on their associations are refreshed dependent on the

gualities on the information, yet inclining further toward that later.

Presently you can perceive any reason why take a new point of view on this kind of network.
Although they are utilizing similar terms, similar to neurons, associations, and weights their
significance is unique. Aside from that, you can see that their structure is less difficult than the
construction of the other feed-forward neural networks resulting in different learning processes.

In the following section learning of networks are there.

82 LEARNING PROCESS OF SELF-ORGANIZING MAPS (SOM)
As we referenced aready, self-organizing maps utilize unsupervised learning. This sort of

learning is also known as competitive learning. The initial phase in the learning system of self-

organizing maps is the configuration of the weight on associations.

From that point forward, an arbitrary example from the dataset is utilized as a contribution to the
network. The network then, at that point, ascertains weights of which neurons are most similar to
the information (input vector).

n

Distance® = ZI:!:HEHH‘.E' — weight;)?

i=0

166

where n is denoted as weights. The map neuron with the outcome is called Best Matching Unit or
BMU. This implies that the input vector can be addressed with this mapping neuron. Presently,
self-organizing maps are not simply computing this point during the learning system, however,

they additionally attempt to make it "closer” to the got input information.

This implies that weights on this association are refreshed in a way that the determined distance
is much more modest. In any case, that isn't the main thing that is finished. The neighbor's
weight of BMU is additionally adjusted so they are nearer to this input vector aswell. Thisisthe
way the entire map is pulled’ toward this point. For this reason, we need to know the span of the
neighbors that will be refreshed. Thisrange is at first enormous, yet it is decreased in each cycle
(epoch). In this way, the subsequent stage in preparing self-organizing maps is working out
referenced radius values. The accompanying equation is applied:

e

a(t) = oge”
wheret isthe current cycle, oo isthe map radius. The /1 isdefined as.

A=kfay

where k is the number of repetitions. This formula uses exponentia decay, making the span more
modest as the training goes on, which was the underlying objective. Thisimplies that each cycle
through the information will carry significant points nearer to the input data in this way the self-

organizing maps are fine-tuned.

Itteration 1 Bteration 2 Izteration 3

The updation of weights is there when the radius of the current cycle is determined. The nearer
the neuron is to the BMU the possibility of changing the weight's increases. This is accomplished
by utilizing this equation:

weight(t + 1) = weight(t) + O(t) L(t) (input(t) — weight(t))

167

This is the fundamental learning formula, and it has a couple of significant focuses that ought to
be discussed. The first is L(t) which addresses the learning rate. Additionally for radius formula,

it isusing exponential decay and it is getting more modest in each cycle:

Lit) = L{]E’_%
Aside from that, as the weights are directly the neuron closer to BMU, In the equation, that is

taken care of with the ®(t). This value is determined this way:
O(t) = e distBMU/2a(t)?

If the neuron is nearer to the BMU, distBMU is more modest, and with that ®(t) esteem is more
like 1. This implies that the values of the neuron weight will be more changed. This entire
method is repeated a few times.

To summarize it, these are ssmply the main steps in the self-organizing map learning process:

1 Initialization of weights

2. Theinput for the network is selected from the input vector in the dataset

3. BMU is determined

4, Theradius of neighbors that will be refreshed is determined

5. Each neuron’'s weight inside the span are adapted to make them more similar to the input
vector

6. Stepsfrom 2 to 5 are repeated for each information vector of the dataset

There are a ton of varieties of the situations introduced utilized in the learning system of self-
organizing maps. Indeed, a great deal of research has been finished attempting to get to the ideal
value for the number of iteration, the learning rate, and the local span. The innovator, Teuvo
Kohonen, recommended that this learning system ought to be parted into two stages. During the
initial stage, the learning rate would be decreased from 0.9 to 0.1 and the local range from alarge

portion of the width of the lattice to the promptly surrounding nodes.

In the subsequent stage, the learning rate would be additionally diminished from 0.1 to 0.0.
Notwithstanding, there would be twofold or more repetition in the subsequent stage and the
neighborhood value ought to stay fixed at 1, which means the BMU as it were. Thisimplies that
the initial stage would be utilized for learning and the subsequent stage would be utilized for

fine-tuning.

168

83 IMPLEMENTATIONS OF SELF-ORGANIZING MAPS (SOM)

Mini-SOM is a minimalistic, Numpy based execution of the Self-Organizing Maps and it is very
easy to understand. It can be installed using pip:

pip install minisom

or using the downloaded setup:

python setup.py install

As referenced, the use of this library is very simple and clear. You have to create a SOM class
object and defining its various attributes such as learning rate, size, radius, and size of the input.
From that point forward, you can utilize one of the two aternatives for training that this
execution gives — train_batch or train_random. The first uses ordered samples, while the
subsequent one mixes through the samples. Here is an example:

from minisomimport MiniSom

som = MiniSom(4, 4, 2, sigma=0.5, learning_rate=0.5)

som.train_random(data, 50)

In this model, 4x4 Self-Organizing Map is made, with the 2 input nodes. Learning rate and range (sigma)
are both introduced to 0.5. Then, Self-Organizing Map is prepared with input information for 50
repetitions utilizing train_random.

8.3.1 Implementation with Python and Tensorflow

For this execution, alow-level API of TensorFlow is utilized. Here you can track down afast aide on the
most proficient method to rapidly introduce it and how to begin functioning with it. As arule, the low-

level API of thislibrary isutilized for the execution. Thus, we should look at the code:

import tensorflow as tf

import numpy as np

class SOM (object):
def __init_ (self, x, y, input_dim, learning_rate, radius, num_iter=111):

#lnitialize properties

self._x=x

self. y=vy

self. learning_rate = float(learning_rate)

169

self._radius = float(radius)
self._num_iter = num_iter
self._graph = tf.Graph()

#nitialize graph
with salf._graph.as_default():

#lnitializing variables and placehol ders

self._weights = tf.Variable(tf.random_normal ([x*y, input_dim]))
self._locations = self._generate_index_matrix(x, y)

self._input = tf.placeholder("float”, [input_dim])

self._iter_input = tf.placeholder("float™)

#Calculating BMU

input_matix = tf.stack([sdlf._input for i in range(x*y)])
distances=tf.sgrt(tf.reduce_sum(tf.pow(tf.subtract(self. weights, input_matix), 2), 1))
bmu = tf.argmin(distances, 0)

#Get BMU location

mask = tf.pad(tf.reshape(bmu, [1]), np.array([[0, 1]]))

size = tf.cast(tf.constant(np.array([1, 2])), dtype=tf.int64)
bmu_location = tf.reshape(tf.dice(salf._locations, mask, size), [2])

#Calculate learning rate and radius

decay_function = tf.subtract(1.0, tf.div(sdlf._iter_input, self. num iter))
_current_learning_rate = tf.multiply(sdlf._learning_rate, decay function)
_current_radius = tf.multiply(self._radius, decay function)

#Adapt learning rate to each neuron based on position

bmu_matrix = tf.stack([bmu_location for i in range(x*y)])

bmu_distance = tf.reduce_sum(tf.pow(tf.subtract(self._locations, bmu_matrix), 2), 1)

neighbourhood_func = tf.exp(tf.negative(tf.div(tf.cast(bmu_distance, "float32"),
tf.pow(_current_radius, 2))))

learning_rate_matrix = tf.multiply(_current_learning_rate, neighbourhood_func)

170

#Update all the weights
multiplytiplier = tf.stack([tf.tile(tf.dlice(
learning_rate_matrix, np.array([i]), np.array([1])), [input_dim])
for i inrange(x*y)])
delta=tf.multiply(
multiplytiplier,
tf.subtract(tf.stack([self._input for i in range(x*y)]), self. weights))

new_weights = tf.add(self._weights, delta)
salf._training = tf.assign(salf._weights, new_weights)

#nitilizesessonandrunit
self. sess=tf.Session()
initialization = tf.global_variables initiaizer()

salf._sess.run(initialization)

def train(self, input_vects):
for iter_no in range(salf._num_iter):
for input_vect in input_vects:
salf._sessrun(sdf._training,
feed_dict={sdf. input: input_vect,
self._iter_input: iter_no})

self._centroid_matrix = [[] for i in range(self. x)]

self._weights list = list(salf._sess.run(sdf._weights))

self._locations = list(self._sess.run(self._locations))

for i, loc in enumerate(salf._locations):
salf._centroid_matrix[loc[0]].append(salf._weights lis[i])

def map_input(self, input_vectors):
return_value =[]
for vect in input_vectors:

min_index = min([i for i in range(len(self._weights _list))],

171

key=lambdax: np.linalg.norm(vect — self. weights list[x]))
return_value.append(self._locationg{min_index])
return return_value

def _generate_index_matrix(self, x,y):
return tf.constant(np.array(list(self._iterator(x, y))))

def iterator(sdf, x, y):
for i inrange(x):
for j in range(y):
yield np.array([i, j])
That is quite a lot of code, so let’s dissect it into smaller chunks and explain what each piece
means. The majority of the code is in the constructor of class which, similar to the MiniSOM
implementation, takes dimensions of the Self-Organizing Map, input dimensions, radius, and

learning rate as input parameters.

8.3.2 Initialization
Thefirst thing that is doneisthe initialization of all the fields with the values that are passed into
the class constructor:

nitialize properties

self. x =X

sef. y=y

sdf. learning_rate = float(learning_rate)

self._radius = float(radius)

self._ num_iter = num_iter

self._graph = tf.Graph()

Note that we created the TensorFlow graph as a _graph field. In the next part of the code, we
essentially add operations to this graph and initialize our Self-Organizing Map. If you need more
information on how TensorFlows graphs and sessions work, you can find it here. Anyway, the

first step that needs to be done isto initialize variables and placeholders:

#lnitializing variables and placeholders
self._weights = tf.Variable(tf.random_normal ([x*y, input_dim]))

172

https://www.tensorflow.org/guide/graphs

sdlf._locations = self._generate index_matrix(X, y)

self._input = tf.placeholder("float”, [input_dim])

self._iter_input = tf.placeholder("float™)

Basically, we created _weights as arandomly initialized tensor. In order to easily manipulate the
neurons matrix of indexes is created — _locations. They are generated by

using _generate index_matrix, which looks like this:

def generate index_matrix(sdf, x,y):
return tf.constant(np.array(list(self._iterator(x, y))))

def _iterator(sdlf, x, y):
for i in range(x):
forj inrange(y):
yield np.array([i, j])

Also, notice that _input (input vector) and _iter_input (iteration number, which is used for radius
calculations) are defined as placeholders. This is since this information is filled during the
training phase, not the construction phase. Once all variables and placeholders are initialized, we
can start with the Self-Organizing Map learning process algorithm.

8.3.3BMU Calculations

Firstly, BMU is calculated and it’s location is determined:

#Calculating BMU

input_matix = tf.stack([self._input for i in range(x*y)])

distances = tf.sqrt(tf.reduce_sum(tf.pow(tf.subtract(self._weights, input_matix), 2), 1))

bmu = tf.argmin(distances, 0)

#Get BMU location

mask = tf.pad(tf.reshape(bmu, [1]), np.array([[O, 1]]))

size =tf.cast(tf.constant(np.array([1, 2])), dtype=tf.int64)
bmu_location = tf.reshape(tf.slice(self. _locations, mask, size), [2])

173

The first part calculates the Euclidean distances between all neurons and the input vector. Don’t
get confused by the first line of this code. In essence, this input sample vector is repeated and the
matrix is created to be used for calculations with weights tensor. Once distances are calculated,
the index of the BMU is returned. This index is used, in the second part of the gist, to get the
BMU location. We relied on the dlice function for this. Once that is done, we need to calculate

values for learning rate and radius for the current iteration. That is done like this:

#Adapt learning rate to each neuron based on position

bmu_matrix = tf.stack([bmu_location for i inrange(x*y)])

bmu_distance =tf.reduce_sum(tf.pow(tf.subtract(self._locations, bmu_matrix), 2), 1)
neighbourhood_func = tf.exp(tf.negative(tf.div(tf.cast(bmu_distance, "float32"),
tf.pow(_current_radius, 2))))

learning_rate_matrix = tf.multiply(_current_learning_rate, neighbourhood_func)

The first matrix of BMU location value is created. Then of the neuron to the BMU is cal cul ated.
After that, the so-called neighbourhood_func is created. This function is basically defining how

the weight of concrete neurons will be changed.

8.3.4 Update Weights
Finally, the weights are updated accordingly and the TensorFlow session isinitialized and run:

#Update all the weights
multiplytiplier = tf.stack([tf.tile(tf.dlice(
learning_rate_matrix, np.array([i]), np.array([1])), [input_dim])
for i in range(x*y)])
delta=tf.multiply(
multiplytiplier,
tf.subtract(tf.stack([self._input for i in range(x*y)]), self._weights))

new_weightages = tf.add(self._weights, delta)
self._training = tf.assign(self._weights, new_weightages)

#lnitilize sessonand run it
self._sess = tf.Session()

174

https://rubikscode.net/2018/08/20/introduction-to-self-organizing-maps/

initialization = tf.global_variables initializer()

sdlf._sess.run(initialization)

Apart from the _generate_index_matrix function that you saw previously, this class has also two
important functions — train and map_input. The first one, as its name suggests, is used to train

the Self-Organizing Map with proper input. Here is how that function looks like:

def train(self, input_vects):
for iter_no in range(self._num_iter):
for input_vect ininput_vects:
sdf._sess.run(sdlf._training,
feed_dict={salf. input: input_vect,
self._iter_input: iter_no})

self._centroid_matrix = [[] for i in range(self._x)]
sdf. weights list = list(self._sess.run(self._weights))
self. locations = list(self._sess.run(self._locations))
for i, loc in enumerate(self._locations):
sdlf._centroid_matrix[loc[0]].append(self._ weights list[i])
Essentially, we have just run a defined number of iterations on passed input data. For that, we
used _training operation that we created during class construction. Notice that here placeholders
for iteration number and input sample are filled. That is how we run created sessions with correct
data
The second function that this class has is map_input. This function is mapping defined input
samplesto the correct output. Here is how it looks like:
def map_input(self, input_vectors):
return_vaue =]
for vect in input_vectors:
min_index = min([i for i in range(len(self. weights list))],
key=lambdax: np.linalg.norm(vect — self._ weights list[x]))
return_va ue.append(sdlf._locationg min_index])

return return_value

175

8.3.5 Usage
In the end, we got a Self-Organizing Map with a pretty straightforward API that can be easily
used. In the next article, we will use this class to solve one real-world problem. To sum it up, it

can be used something like this:

from somtf import SOM

som = SOM(6, 6, 4, 0.5, 0.5, 100)

som.train(data)

84 ART INTRODUCTION

This network was developed by Stephen Grossberg and Gail Carpenter in 1987. It is based on

competition and uses an unsupervised learning model. Adaptive Resonance
Theory .ART networks, as the name suggests, is always open to new learning adaptive without
losing the old patterns resonance. Basically, ART network is a vector classifier which accepts
an input vector and classifies it into one of the categories depending upon which of the stored
pattern it resembles the most.

8.4.1 Operating Principal
Themain operation of ART classification can be divided into the following phases —

e Recognition phase — The input vector is compared with the classification presented at
every node in the output layer. The output of the neuron becomes “1” if it best matches

with the classification applied, otherwise it becomes “0”.

o Comparison phase — In this phase, a comparison of the input vector to the comparison
layer vector is done. The condition for reset is that the degree of similarity would be less

than vigilance parameter.

e Search phase — In this phase, the network will search for reset as well as the match done
in the above phases. Hence, if there would be no reset and the match is quite good, then
the classification is over. Otherwise, the process would be repeated and the other stored

pattern must be sent to find the correct match.

176

85_ART1

It is atype of ART, which is designed to cluster binary vectors. We can understand about this
with the architecture of it.

Architecture of ART1

It consists of the following two units —
Computational Unit — It is made up of the following —
o Input unit (F1layer) — It further has the following two portions —

o Fiaalayer Inputportionlnputportion — In ART1, there would be no processing in
this portion rather than having the input vectors only. It is connected to
F1bb layer interfaceportioninterfaceportion.

o Fibb layer InterfaceportionInterfaceportion — This portion combines the signal
from the input portion with that of F. layer. Fibb layer is connected to F> layer
through bottom up weights bij and F> layer is connected to Fibb layer through
top down weights tji.

e Cluster Unit (F2 layer) — This is a competitive layer. The unit having the largest net
input is selected to learn the input pattern. The activation of al other cluster unit are set
to 0.

e Reset Mechanism — The work of this mechanism is based upon the similarity between
the top-down weight and the input vector. Now, if the degree of this similarity is less
than the vigilance parameter, then the cluster is not allowed to learn the pattern and a

rest would happen.

Supplement Unit — Actually the issue with Reset mechanism is that the layer F2 must have to
be inhibited under certain conditions and must aso be available when some learning happens.
That is why two supplemental units namely, G1 and G2 is added along with reset unit, R. They
are called gain control units. These units receive and send signals to the other units present in

the network. ‘+* indicates an excitatory signal, while ‘=’ indicates an inhibitory signal.

177

= ki -

; . . J .

k) --L 5 .ll-\._ H: L1 .-,__ - e Wi .I

A, i e .: SRR
B ure | R i 1 hh“'.n-"'f"f I
L s |

FE '-. . -~ b S aa

ll"'-.[L | M g, L

S | - e oy e .. A

o l.-f"'x_ ___.-"' HH e

[& p—ol * _)

SR ""-.l.-" .

Fyla} laer F4lb| tayer Fi layer

[egst Fertem minfem Prram Tty Urir

‘ .:b“ |

Fp layer| Cliratan unita) — |

N l’ .
-

Fyik) layan|istarface uriks] -—E

L v |

L

Lyin| Leymimpus it

Parameters Used

Following parameters are used —
e N — Number of components in the input vector

e m— Maximum number of clusters that can be formed
o bij — Weight from Fibb to F, layer, i.e. bottom-up weights
o tji —Weight from F. to Fibb layer, i.e. top-down weights

e p — Vigilance parameter

o |[|x]] — Norm of vector x

8.6_ ALGORITHM

Step 1 - Initialize the learning rate, the vigilance parameter, and the weights as follows —

o>1and0<p=<lo>1land0<p<I

178

0<bij(0)<ao—1+nandtij(0)=10<bij(0)<ao—1+nandtij(0)=1
Step 2 — Continue step 3-9, when the stopping condition is not true.
Step 3 — Continue step 4-6 for every training input.

Step 4 — Set activations of all Fraaand F1 units asfollows
F2 = 0 and Faaa= input vectors

Step 5 Input signal from Fraato F1bb layer must be sent like
S=xis=xi

Step 6 — For every inhibited F2 node
yi=Yibijxiyj=Y ibijxi the conditionisy; # -1

Step 7 — Perform step 8-10, when the reset istrue.
Step 8 — Find J for ys >y; for al nodes|

Step 9 — Again calculate the activation on Fibb as follows
Xi=sitJixi=sitJi

Step 10 — Now, after calculating the norm of vector x and vector s, we need to check the reset

condition as follows —

If |IX|I/ |Is|| < vigilance parameter p.i/oithen!/oiinhibit /0inode J and go to step 7

Else If |[X||/ ||| > vigilance parameter p, then proceed further.
Step 11 — Weight updating for node J can be done asfollows—
bij(new)=oxio—1+{|x|[bij(new)=oxio—1+|x||

tij (new)=xitij(new)=xi

Step 12 — The stopping condition for algorithm must be checked and it may be as follows —

« Do not have any change in weight.
e Resetisnot performed for units.

e Maximum number of epochs reached.

179

The Adaptive Resonance Theory (ART) was incorporated as a hypothesis for human cognitive
data handling. The hypothesis has prompted neural models for pattern recognition and
unsupervised learning. ART system has been utilized to clarify different types of cognitive and
brain data.

The Adaptive Resonance Theory addresses the stability-plasticity(stability can be defined as the
nature of memorizing the learning and plasticity refers to the fact that they are flexible to gain
new information) dilemma of a system that asks how learning can proceed in response to huge
input patterns and simultaneously not to lose the stability for irrelevant patterns. Other than that,
the stability-elasticity dilemma is concerned about how a system can adapt new data while
keeping what was learned before. For such a task, a feedback mechanism is included among the
ART neural network layers. In this neural network, the data in the form of processing elements
output reflects back and ahead among layers. If an appropriate pattern is build-up, the resonance

is reached, then adaption can occur during this period.

It can be defined as the formal analysis of how to overcome the learning instability accomplished
by a competitive learning model, let to the presentation of an expended hypothesis,
called adaptive resonance theory (ART). This formal investigation indicated that a specific
type of top-down learned feedback and matching mechanism could significantly overcome the
instability issue. It was understood that top-down attentional mechanisms, which had prior been
found through an investigation of connections among cognitive and reinforcement mechanisms,
had similar characteristics as these code-stabilizing mechanisms. In other words, once it was
perceived how to solve the instability issue formally, it also turned out to be certain that one did
not need to develop any quantitatively new mechanism to do so. One only needed to make sure
to incorporate previously discovered attentional mechanisms. These additional mechanisms
empower code learning to self- stabilize in response to an essentidly arbitrary input
system. Grossberg presented the basic principles of the adaptive resonance theory. A category
of ART called ART1 has been described as an arrangement of ordinary differential equations by
carpenter and Grossberg. These theorems can predict both the order of search as the function of

the learning history of the system and the input patterns.

180

ART1 is an unsupervised learning model primarily designed for recognizing binary patterns. It

comprises an attentional subsystem, an orienting subsystem, a vigilance parameter, and a reset

module, as given in the figure given below. The vigilance parameter has a huge effect on the

system. High vigilance produces higher detailed memories. The ART1 attentional comprises of

two competitive networks, comparison field layer L1 and the recognition field layer L2, two

control gains, Gainl and Gain2, and two short-term memory (STM) stages S1 and S2. Long term

memory (LTM) follows somewhere in the range of S1 and S2 multiply the signal in these

pathways.

L1(a) layer L1(b) layer La(c) layer -
N Input Portion__/4 & Interface P“'"‘"" & Cluster Unit)

Gains control empowers L1 and L2 to recognize the current stages of the running cycle.
STM reset wave prevents active L2 cells when mismatches between bottom-up and top-
down signals happen at L1. The comparison layer gets the binary external input passing it
to the recognition layer liable for coordinating it to a classification category. This
outcome is given back to the comparison layer to find out when the category coordinates
the input vector. If there is a match, then a new input vector is read, and the cycle begins
once again. If there is a mismatch, then the orienting system isin charge of preventing the
previous category from getting a new category match in the recognition layer. The given
two gains control the activity of the recognition and the comparison layer, respectively.
The reset wave specifically and enduringly prevents active L2 cell until the current is
stopped. The offset of the input pattern ends its processing L1 and triggers the offset of
Gain2. Gain2 offset causes consistent decay of STM at L2 and thereby prepares L2 to
encode the next input pattern without bais.

181

87 ART1IMPLEMENTATION PROCESS

ART1 is a self-organizing neura network having input and output neurons mutually couple

using bottom-up and top-down adaptive weights that perform recognition. To start our
methodology, the system is first trained as per the adaptive resonance theory by inputting
reference pattern data under the type of 5*5 matrix into the neurons for clustering within the
output neurons. Next, the maximum number of nodes in L2 is defined following by the vigilance
parameter. The inputted pattern enrolled itself as short term memory activity over a field of
nodes L1. Combining and separating pathways from L1 to coding field L2, each weighted by an
adaptive long-term memory track, transform into a net signal vector T. Internal competitive
dynamics at L2 further transform T, creating a compressed code or content addressable memory.
With strong competition, activation is concentrated at the L2 node that gets the maximal L1 —
L2 signal. The primary objective of thiswork is divided into four phases as follows Comparision,

recognition, search, and learning.
Advantage of adaptive learning theory(ART):

e It can be coordinated and utilized with different techniques to give more precise
outcomes.

e It doesn't ensure stability in forming clusters.

o It can beusedin different fields such as face recognition, embedded system, and robotics,
target recognition, medical diagnosis, signature verification, etc.

o It shows stability and is not disturbed by a wide range of inputs provided to inputs.

« It hasgot benefits over competitive learning. The competitive learning cant include new

clusters when considered necessary.

182

Application of ART:

ART stands for Adaptive Resonance Theory. ART neural networks used for fast, stable
learning and prediction have been applied in different areas. The application incorporates

target recognition, face recognition, medical diagnosis, signature verification, mobile

Target Mobile Control
Recognition Robot
Medical Signature
Diagnosis Verification

control robot.

Target recognition:

Fuzzy ARTMAP neural network can be used for automatic classification of targets
depend on their radar range profiles. Tests on synthetic data show the fuzzy ARTMAP
can result in substantial savings in memory requirements when related to k nearest
neighbor(kNN) classifiers. The utilization of multiwavelength profiles mainly improves

the performance of both kinds of classifiers.

Medical diagnosis.

Medical databases present huge numbers of challenges found in general information
management settings where speed, use, efficiency, and accuracy are the prime concerns.
A direct objective of improved computer-assisted medicine is to help to deliver intensive
care in situations that may be less than ideal. Working with these issues has stimulated
several ART architecture developments, including ARTMAP-IC.

Signature verification:

Automatic signature verification is awell known and active area of research with various

applications such as bank check confirmation, ATM access, etc. the training of the

183

network is finished using ART1 that uses global features as input vector and the
verification and recognition phase uses a two-step process. In the initial step, the input
vector is coordinated with the stored reference vector, which was used as a training set,

and in the second step, cluster formation takes place.

M obile control robot:

Nowadays, we perceive a wide range of robotic devices. It is till a field of research in
their program part, caled artificial intelligence. The human brain is an interesting subject
asamodel for such an intelligent system. Inspired by the structure of the human brain, an
artificial neural emerges. Similar to the brain, the artificial neural network contains
numerous simple computational units, neurons that are interconnected mutually to allow
the transfer of the signal from the neurons to neurons. Artificial neural networks are used

to solve different issues with good outcomes compared to other decision agorithms.
Limitations of ART:

Some ART networks are contradictory as they rely on the order of the training data, or
upon the learning rate.

ART implemntation with specification is described below

lusr/bin/env
python
#
Adaptive Resonance Theory
#
Distributed under the terms of the BSD License.
#
Reference: Grossberg, S. (1987)
Competitive learning: From interactive activation to
adaptive resonance, Cognitive Science, 11, 23-63

184

#
Requirements. python 2.5 or above => http://www.python.org
numpy 1.0 or above => http://numpy.scipy.org

#

from __future___import print_function

from __future___import division
import numpy as np
classART:
" ART class
Usage example:
Create a ART network with input of size 5 and 20 internal units
>>> network = ART(5,10,0.5)

def __init__ (self, n=5, m=10, rho=.5):
Create network with specified shape
Parameters.
n:int
Size of input
m:int
Maximum number of interna units
rho : float
Vigilance parameter
Comparison layer
self.F1 = np.ones(n)
Recognition layer

185

http://www.python.org/
http://numpy.scipy.org/

self.F2 = np.ones(m)

Feed-forward weights

self.Wf = np.random.random((m,n))
Feed-back weights

self.Wb = np.random.random((n,m))
Vigilance

self.rho =rho

Number of active unitsin F2
self.active=0

def learn(salf, X):

“Learn X ™

Compute F2 output and sort them (1)
self.F2[...] = np.dot(self.Wf, X)
| = np.argsort(salf.F2[:self.active].ravel ())[::-1]

foriinl:
Check if nearest memory is above the vigilance level
d = (sef.WhJ[:,i]1* X).sum()/X.sum()
if d >= sdf.rho:
Learn data
self.Wh[:,i] *=X
self. WiH[i,:] = self. Wh[:,i]/(0.5+self. W[:,i].sum())
return self.Wb[:,i], i

186

No match found, increase the number of active units
and make the newly active unit to learn data
if self.active < sdf.F2.size:
i = sdlf.active
self. Wh[:,i] *=X
self. Wi[i,:] = sef.wWh[:,i]/(0.5+salf.Whb[:,i].sum())
self.active+=1
return self. Wb[:,i], i

return None,None

if _name__=='_ main

np.random.seed(1)

Example 1 : very smple data
#

network = ART(5, 10, rho=0.5)
data=[" O",
" 00"
o,
" 00"
o,

187

" 00

" 00 0",
" 00 ",
" 00 0",

"O00 ",

"O0 ",
"0O000 ",
"O0000"]
X = np.zeros(len(data[0]))
for i in range(len(data)):
for j in range(len(datd(i])):
X[j] = (data[i][j] =="O)
Z, k = network.learn(X)
print("|%s|" %data[i],"-> class', k)

188

Example 2 : Learning letters
#

def letter_to_array(letter):
" Convert aletter to anumpy array ™
shape = len(letter), len(letter[Q])
Z = np.zeros(shape, dtype=int)
for row in range(Z.shape[0]):
for column in range(Z.shape[1]):
if letter[row][column] == '#
Z[row][column] =1
return Z

def print_letter(2):
" Print an array asif it was aletter™
for row in range(Z.shape[0]):
for col in range(Z.shape[1]):
if Z[row,col]:
print('#, end="")
ese
print('', end="")
print()

A =letter_to_array([###
H#,
" #,
L

189

" #,
" #,
#])

B =letter_to_array(['##H#H#H# ',
##,
" #,
##,
##,
HHHHE])

C =letter_to_array([' ##H#
##,

##,
‘AR)

D =letter_to_array(['#HH#
" #,

#
#,
#,
#,
])
E = letter_to_array([‘#HHH#HHL,
.

190

F=letter_to_array(['#HH#,

samples=[A,B,C,D,E,F]

network = ART(6*7, 10, rho=0.15)

for i in range(len(samples)):

Z, k = network.learn(sampleg[i].ravel ()
print("%c"%(ord('A")+i),"-> class" k)

print_letter(Z.reshape(7,6))

191

