
 

 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION TO 
ANDROID 

 

 

 

 

 

 



 
2 Copyright 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 COURSE MATERIAL 

Introduction to Android 
 

 

 

The Open University of Sri Lanka  
Department of Electrical and Computer Engineering  





Copyright 
This course has been developed as part of the collaborative advanced ICT course development project 
of the Commonwealth of Learning (COL). COL is an intergovernmental organisation created by 
Commonwealth Heads of Government to promote the development and sharing of open learning 
and distance education knowledge, resources and technologies.  
 

The Open University of Sri Lanka (OUSL) is the premier Open and Distance learning institution in the 
country where students can pursue their studies through Open and Distance Learning (ODL) 
methodologies. Degrees awarded by OUSL are treated as equivalent to the degrees awarded by other 
national universities in Sri Lanka by the University Grants Commission of Sri Lanka.  

  

 

© 2017 by the Commonwealth of Learning and The Open University of Sri Lanka. Except where 
otherwise noted, Introduction to Android is made available under Creative Commons Attribution-
ShareAlike 4.0 International (CC BY-SA 4.0) License: https://creativecommons.org/licenses/by-
sa/4.0/legalcode.  
 
For the avoidance of doubt, by applying this license the Commonwealth of Learning does not 
waive any privileges or immunities from claims that it may be entitled to assert, nor does the 
Commonwealth of Learning submit itself to the jurisdiction, courts, legal processes or laws of any 
jurisdiction. The ideas and opinions expressed in this publication are those of the author/s; they 
are not necessarily those of Commonwealth of Learning and do not commit the organisation.  

 

 

 

 

 

 

 

 

 

 
 

 
The Open University of Sri Lanka 
P. O. Box 10250, 
Nawala, 
Nugegoda, 
Sri Lanka 
Phone: +94 112881481 
Fax: +94 112821285 
Email: hdelect@ou.ac.lk 
Website: www.ou.ac.lk 

 

 
 

Commonwealth of Learning 
4710 Kingsway, Suite 2500, Burnaby 

V5H 4M2,  
British Columbia,  

Canada 
Phone: +1 604 775 8200  

Fax: +1 604 775 8210   
Email: info@col.org 

Website: www.col.org 

http://www.ou/




 

Acknowledgements 
Department of Electrical and Computer Engineering (ECE), The Open University of Sri Lanka 
(OUSL) wishes to thank those below for their contribution to this course material and accompanying 
Videos and Screencasts: 

Chairperson of the Course team:  

H.U.W. Ratnayake (Senior Lecturer, Dept. of ECE, OUSL)  

Authors:  

W.A.S.N. Perera (Lecturer, Dept. of ECE, OUSL) Units 1 and 2 

J. Nananyakkara (Lecturer, Dept. of ECE, OUSL) Units 3 and 4 

B.K. Werapitiya (Lecturer, Dept. of ECE, OUSL) Units 5 and 6 

S. Rajasingham (Lecturer, Dept. of ECE, OUSL) Units 7 and 8 

U.S. Premaratne (Lecturer, Dept. of ECE, OUSL) Units 9 and 10 

W.U. Erandaka (Lecturer, Dept. of Textile & Apparel Tech, OUSL) Units 11 and 12 

W.W.A.I.D. Wickramasinghe (Demonstrator, Dept. of ECE, OUSL) Units 13 and 14 

H.U.W. Ratnayake (Senior Lecturer, Dept. of ECE, OUSL) Units 15 and 16 

Content Editors:  

C.W.S. Goonatilleke (Senior Software Engineer, WSO2 Inc)  

G.S.N. Meedin (Lecturer, Dept. of ECE, OUSL)  

Language Editor:  

G.S.N. Meedin (Lecturer, Dept. of ECE, OUSL)  

Reviewer:  

D.G. U. Kulasekara (Senior Lecturer/Centre for Educational Technology & Media, 
OUSL) 

 

Video Presenters:  

U.S. Premartane (Lecturer, Dept. of ECE, OUSL)  

S. Rajasingham (Lecturer, Dept. of ECE, OUSL)  

Screen casters:  

C.W.S. Goonatilleke (Senior Software Engineer, WSO2 Inc) 

 

 



 
4  

 



 
 Introduction to Android 

 

Contents 

About this course material 1 

How this course material is structured ........................................................................... 1 

Course overview 3 

Welcome to Introduction to Android ............................................................................. 3 
Video V-0: Introduction to Android ..................................................................... 3 

Introduction to Android —is this course for you? .......................................................... 3 
Course objectives .......................................................................................................... 4 
Course outcomes ........................................................................................................... 4 
Timeframe .................................................................................................................... 5 
Study skills ................................................................................................................... 6 
Need help? .................................................................................................................... 6 
Assignments .................................................................................................................. 7 
Assessments .................................................................................................................. 7 

Getting around this course material 9 

Margin icons ................................................................................................................. 9 

Unit 1 11 

Introduction to Android ............................................................................................... 11 
Introduction ....................................................................................................... 11 
1.1 Android as a popular mobile platform .......................................................... 12 
Video V-1:  Course Overview ............................................................................ 13 

Activity ....................................................................................................................... 13 
1.2 History of Android ....................................................................................... 13 
Video V-2: Evolution of Android ....................................................................... 14 

Activity ....................................................................................................................... 18 
 1.3 Features of Android..................................................................................... 19 
 1.4 Comparison of mobile Operating systems ................................................... 21 
 1.5 Devices that run Android as the Operating System ...................................... 23 

Activity ....................................................................................................................... 23 
1.6 Categories of Android applications............................................................... 23 

Unit summary ............................................................................................................. 24 
Reference .................................................................................................................... 24 

Unit 2 25 

Android Architecture .................................................................................................. 25 
Introduction ....................................................................................................... 25 
2.1 Android Architecture ................................................................................... 25 

Activity ....................................................................................................................... 27 
Video V3: Android Architecture ........................................................................ 30 



 
6 Contents 

Activity ....................................................................................................................... 30 
2.2 Types of mobile applications ........................................................................ 31 

Activity ....................................................................................................................... 33 
2.3 Application Fundamentals ............................................................................ 34 

Unit summary ............................................................................................................. 36 
References .................................................................................................................. 36 

Unit 3 37 

Activity lifecycle ......................................................................................................... 37 
Introduction ....................................................................................................... 37 
3.1 What is an Activity in Android? ................................................................... 37 

Activity ....................................................................................................................... 38 
Activity ....................................................................................................................... 39 

3.2 What is an Activity Lifecycle? ..................................................................... 39 
Video-V4: Android Application Fundamentals .................................................. 40 
3.3 What are the Android process states? ........................................................... 43 

Activity ....................................................................................................................... 45 
Unit summary ............................................................................................................. 46 

Unit 4 47 

Android Development Environment ............................................................................ 47 
Introduction ....................................................................................................... 47 
4.1 Reasons for Android Development ............................................................... 47 
4.2 Android Development Platforms, Features and Tools ................................... 48 

Activity ....................................................................................................................... 55 
4.3 Configuring Android Development Environment ......................................... 55 
Video - V5: Setting Up Android Development Environment .............................. 55 

Activity ....................................................................................................................... 57 
Video-V6: Install Android for Windows 10 ....................................................... 57 

Unit summary ............................................................................................................. 58 

Unit 5 59 

Android application fundamentals ............................................................................... 59 
Introduction ....................................................................................................... 59 
5.1 Basic App Components ................................................................................ 59 
Video -V6: Android Development ..................................................................... 67 

Activity ....................................................................................................................... 67 
5.2 Additional Components ................................................................................ 68 
5.3 Resources ..................................................................................................... 73 

Activity ....................................................................................................................... 76 
5.4 Android Manifest ......................................................................................... 76 
5.5 File conventions ........................................................................................... 78 



Activity ....................................................................................................................... 81 
Unit summary ............................................................................................................. 81 

Unit 6 82 

Android Development ................................................................................................. 82 
Introduction ....................................................................................................... 82 
6.1 Creating Your First Program ........................................................................ 82 

Activity ....................................................................................................................... 84 
 .......................................................................................................................... 84 
6.2 Building and running the application ............................................................ 84 

Activity ....................................................................................................................... 92 
Unit summary ............................................................................................................. 93 

Unit 7 94 

Device Compatibility .................................................................................................. 94 
Introduction ....................................................................................................... 94 
7.1 Application availability to devices ................................................................ 95 

Activity ....................................................................................................................... 95 
7.2 Device Features ............................................................................................ 95 
 7.3 Platform Version ......................................................................................... 96 

Activity ....................................................................................................................... 97 
 7.4 Screen Configuration................................................................................... 97 
Video- V7: Device Compatibility ..................................................................... 100 

Activity ..................................................................................................................... 100 
Unit summary ........................................................................................................... 101 

Unit 8 102 

User Interface Design ................................................................................................ 102 
Introduction ..................................................................................................... 102 
8.1 UI Overview .............................................................................................. 102 
 8.2 User Interface Layout ................................................................................ 103 
Video – V8: Creating GUI for Android Application ......................................... 104 
 8.3 Input Controls ........................................................................................... 105 
8.4 Fundamentals of designing user interfaces using XML ............................... 106 

Activity ..................................................................................................................... 109 
Activity ..................................................................................................................... 110 
Activity ..................................................................................................................... 110 
Activity ..................................................................................................................... 111 

8.5 Design a UI with Layout Editor .................................................................. 111 
8.6 Managing Touch Events in a ViewGroup ................................................... 113 
8.7 Best Practices for User Interface ................................................................ 115 

Unit summary ........................................................................................................... 116 

Unit 9 117 

Testing and Debugging ............................................................................................. 117 
Introduction ..................................................................................................... 117 
 9.1 What is Testing? ....................................................................................... 117 



 
8 Contents 

 9.2 How to test Android application? .............................................................. 118 
9.3 Unit Testing ............................................................................................... 118 

Activity ..................................................................................................................... 119 
9.4 How to set up your Testing Environment? .................................................. 119 
Video – V9: Android Unit Testing ................................................................... 125 

Activity ..................................................................................................................... 126 
9.5 What is Debugging? ................................................................................... 126 

Activity ..................................................................................................................... 127 
9.6 What is Logcat? ......................................................................................... 127 

Unit summary ........................................................................................................... 128 

Unit 10 129 

Integrating Multimedia .............................................................................................. 129 
Introduction ..................................................................................................... 129 
 10.1 Introduction to Multimedia ...................................................................... 130 
 10.2 Audio and Video Integration into Android Application Development ...... 130 
Video-V10: Multimedia for Android Interactive Application Development...... 130 

Activity ..................................................................................................................... 133 
Activity ..................................................................................................................... 137 

 10.3 Camera functions in Android Application Development .......................... 138 
Activity ..................................................................................................................... 142 

10.4 Supported Media Formats ........................................................................ 142 
Unit summary ........................................................................................................... 143 

Unit 11 144 

Saving Data on Android Devices ............................................................................... 144 
Introduction ..................................................................................................... 144 
 11.1 Android Storage Options ......................................................................... 144 
11.2 Shared Preferences ................................................................................... 145 

Activity ..................................................................................................................... 147 
 ........................................................................................................................ 147 
11.3 Internal Storage ........................................................................................ 147 
11.4 External Storage ....................................................................................... 149 

Activity ..................................................................................................................... 154 
11.5 Saving Data in SQLite Databases ............................................................. 154 

Activity ..................................................................................................................... 159 
Unit summary ........................................................................................................... 159 
References ................................................................................................................ 159 

Unit 12 160 

Locating and Sensing ................................................................................................ 160 
Introduction ..................................................................................................... 160 
12.1 Introduction to Sensors ............................................................................. 160 
 12.2 Android Sensor Framework ..................................................................... 161 
12.3 Identifying Sensors and sensor Capabilities .............................................. 162 

Activity ..................................................................................................................... 163 
 12.4 Monitoring Sensor Events ....................................................................... 163 
12.5 Sensor Coordinate System ........................................................................ 165 



 12.6 Best Practices for Accessing and Using Sensors ...................................... 166 
 12.7 Commonly Used Sensors ........................................................................ 167 

Activity ..................................................................................................................... 170 
 12.8 Making Your App Location-Aware ......................................................... 171 
 12.9 Getting the Last Known Location ............................................................ 172 
12.10 Changing Location Settings .................................................................... 173 
12.11 Receiving Location Updates ................................................................... 176 
 12.12 Adding Google Maps to Your App ........................................................ 179 

Activity ..................................................................................................................... 179 
Unit summary ........................................................................................................... 179 
References ................................................................................................................ 179 

Unit 13 180 

Connectivity and the cloud ........................................................................................ 180 
Introduction ..................................................................................................... 180 
 13.1 Connecting devices wirelessly ................................................................. 180 
 13.2 Performing network operations................................................................ 181 

Activity ..................................................................................................................... 182 
 13.3 Considerations when transferring data ..................................................... 183 
13.4 Syncing to the cloud with information delivery models ............................ 184 
Video – V11: Connectivity and the cloud ......................................................... 184 
13.5 Push notification ...................................................................................... 184 

Activity ..................................................................................................................... 186 
Unit summary ........................................................................................................... 187 

Unit 14 188 

Publish to Android Market ........................................................................................ 188 
Introduction ..................................................................................................... 188 
 14.1 How can you obtain an Android application? .......................................... 188 
 14.2 App Stores .............................................................................................. 189 

Activity ..................................................................................................................... 190 
14.3 Revenue Models ....................................................................................... 190 

Activity ..................................................................................................................... 192 
14.4 Google Play ............................................................................................. 192 
14.5 Process of Publishing an Android Application .......................................... 192 
Video – V12: Publish to Android Market ......................................................... 193 

Activity ..................................................................................................................... 193 
Unit summary ........................................................................................................... 194 
References ................................................................................................................ 194 

Unit 15 195 

Performance .............................................................................................................. 195 
Introduction ..................................................................................................... 195 
15.1  Performance Profiling ............................................................................. 195 
 15.2 Android Monitor Overview ..................................................................... 196 
Video -V13: Performance Profiling .................................................................. 197 
 ........................................................................................................................ 199 



 
10 Contents 

Activity ..................................................................................................................... 201 
15.3 Android Monitor Basics ........................................................................... 201 
15.4 Profiling a Running App in Android Monitor ........................................... 202 
15.5 How Android Manages Memory .............................................................. 204 

Activity ..................................................................................................................... 206 
15.6 Battery Analysis ....................................................................................... 207 
Video – V14: Battery Analysis ......................................................................... 207 
15.7 Optimizing Battery Life ........................................................................... 209 

Activity ..................................................................................................................... 210 
Unit summary ........................................................................................................... 211 

Unit 16 212 

Security ..................................................................................................................... 212 
Introduction ..................................................................................................... 212 
16.1 Security Concerns of an Android Application ........................................ 212 
16.2 Security Provided by the OS..................................................................... 213 

Activity ..................................................................................................................... 214 
16.3 Information Leakage ................................................................................ 214 

Activity ..................................................................................................................... 215 
16.4 Device management policies .................................................................... 216 

Activity ..................................................................................................................... 218 
Unit summary ........................................................................................................... 218 
References ................................................................................................................ 218 

Appendix -A 219 

Sensor types .............................................................................................................. 219 

Appendix - B 225 

Answers to Activities ................................................................................................ 225 



 

 
 Introduction to Android 

 

 
1 

 
 

 

About this course material 
This book ‘Introduction to Android’  has been produced by The Open 
University of Sri Lanka.  

How this course material is 
structured 

The course overview 

The course overview gives you a general introduction to the course. 
Information contained in the course overview will help you determine: 

▪ if the course is suitable for you 

▪ what you will already need to know 

▪ what you can expect from the course 

▪ how much time you will need to invest to complete the course 

The overview also provides guidance on: 

▪ study skills 

▪ where to get help 

▪ course assignments and assessments 

▪ activity icons 

▪ units 

We strongly recommend that you read the overview carefully before 
starting your study. 

 

 



 

 

About this course material Introduction to Android 
 

 

2 
 

 
 

The course content 

The course consists of many units. Each unit comprises: 

▪ an introduction to the unit content. 

▪ unit outcomes. 

▪ new terminology. 

▪ core content of the unit with a variety of learning activities. 

▪ a unit summary. 

▪ assignments and/or assessments, as applicable 

Resources 

For those interested in learning more on this subject, we provide you with 
a list of additional resources at the end of each unit; these may be books, 
articles or web sites. 

Your comments 

After completing Introduction to Android we would appreciate if you 
would take a few moments to give us your feedback on any aspect of this 
course. Your feedback might include comments on: 

▪ course content and structure. 

▪ course reading materials and resources. 

▪ course assignments. 

▪ course assessments. 

▪ course duration. 

▪ course support (assigned tutors, technical help, etc.) 
 

Your constructive feedback will help us to improve and enhance this 
course. 

 



 

 
 Introduction to Android 

 

 
3 

 
 

 

Course overview 

Welcome to Introduction to 
Android   

This course will enable you with basic computing skills to develop 
mobile applications with Android operating system. Fundamental 
concepts of Android, theoretical and practical knowledge to develop an 
app incorporating multimedia and security, and performance issues of 
Android are discussed here. At the end of this course, you should be able 
to design and develop a mobile app to solve a real world problem using 
Android. 

Video V-0: Introduction to Android 

A series of videos have been developed as supporting materials for the 
lessons given in this book. This video, ‘Course Overview’, gives a 
general introduction to this series of videos produced. You can view this 
at URL: https://tinyurl.com/ycsrmtho 

 

Introduction to Android —is this 
course for you? 

This course is intended for people who aspire to become mobile 
application developers using Android operating system.. 

You should have basic ICT skills to use a computer and knowledge of a 
programming language such as Java to become a competent programmer 
in Android.. 

 

 

https://tinyurl.com/ycsrmtho


 

 

Course overview Introduction to Android 
 

 

4 
 

 
 

Course objectives 

The objectives of this course are: 

 

Objectives 

▪ to introduce learners to basic concepts in Android 

▪ to enable learners design mobile applications using fundametal 
concepts in Android 

▪ to enable learner to acquire skills in programming with Android 

▪ to introduce learners to performance and security issues that arise 
when developing mobile applications 

Course outcomes 

Upon completion of Introduction to Android  you will be able to: 

 

Outcomes  

▪ explain the functionality of components in  Android operating system 
and how the states of an Android activity change when running an 
Android mobile application 

▪ identify the components and structures of Android development 
environment and explain how and when to apply these components to 
develop a working application 

▪ design  Android mobile applications using an Android development 
environment with existing mobile device  features  

▪ develop  Android mobile applications using an Android development 
environment with existing mobile device  features and deploy in 
Android market 

▪ analyse the limitations of a mobile application for  a  given range of 
mobile devices 

▪ use different testing tools and techniques to inspect and debug an 
Android mobile application 

 



 

 
 Introduction to Android 

 

 
5 

 
 

 

Timeframe 

 

How long? 

This is one-academic year course of 150 total learning hours 

Face to face delivery would include 16 lectures of two hour duration, 11 
laboratory exercises of two hours each, 14 videos  of approximately 4 
minutes. 

Self study time is 5 hours per week for a 8-month academic year which 
include exams as well. 



 

 

Course overview Introduction to Android 
 

 

6 
 

 
 

Study skills 

 

As an adult learner your approach to learning will be different to that 
from your school days: you will choose what you want to study, you will 
have professional and/or personal motivation for doing so and you will 
most likely be fitting your study activities around other professional or 
domestic responsibilities. 

Essentially you will be taking control of your learning environment. As a 
consequence, you will need to consider performance issues related to 
time management, goal setting, stress management, etc. Perhaps you will 
also need to reacquaint yourself in areas such as essay planning, coping 
with exams and using the web as a learning resource. 

Your most significant considerations will be time and space i.e. the time 
you dedicate to your learning and the environment in which you engage 
in that learning. 

We recommend that you take time now—before starting your self-
study—to familiarize yourself with these issues. There are a number of 
excellent resources on the web. A few suggested links are: 

▪ http://www.how-to-study.com/ 

The “How to study” web site is dedicated to study skills resources.  

▪ http://www.howtostudy.org/resources.php 

Another “How to study” web site with useful links to time 
management, efficient reading, questioning/listening/observing skills, 
getting the most out of doing (“hands-on” learning), memory building, 

tips for staying motivated, developing a learning plan. 

The above links are our suggestions to start you on your way. At the time 
of writing these web links were active. If you want to look for more go to 
www.google.com and type “self-study basics”, “self-study tips”, “self-
study skills” or similar. 

Need help? 

 
Help 

This course is offered by the Department of Electrical and Computer 
Engineering of The Open University of Sri Lanka for registered students. 
If you need help regarding this course and if you are a registered student 
at OUSL, please contact:  

http://www.how-to-study.com/
http://www.howtostudy.org/resources.php
http://www.google.com/


 

 
 Introduction to Android 

 

 
7 

 
 

 

Coordinator/ Mobile Application Development,  
Department of Electrical and Computer Engineering, 
Faculty of Engineering Technology,  
The Open University of Sri Lanka 

The coordinator can be contacted by email dist@ou.ac.lk 

Lecturer's and Laboratory instructor's names and email addresses will be 
given with the activity schedule for the particular year. 

Assignments 

 

Assignments 

There will be two assignments for this course which will be changed 
every year and will be given in the Learning Management System ( LMS) 

Assignments should be submitted to LMS on Android 

Assignment submission deadline will be given together with the 
Assignments. Depending on the start and end of the academic year, dates 
will vary. 

 

Assessments 

 

Assessment 

There will be:  

• 2 Assignments,  

• 2 online-quizzes,  

• 3 lab assessments and  

• one mini-project in this course which will be assessed as 
Continues Assessment components 

All continous assesment components will take place before the Final 
Exam 

 





 

 
 Introduction to Android 

 

 
9 

 
 

 

Getting around this course material 

Margin icons 

While working through this course material you will notice the frequent 
use of margin icons. These icons serve to “signpost” a particular piece of 

text, a new task or change in activity; they have been included to help you 
to find your way around this course material. 

A complete icon set is shown below. We suggest that you familiarize 
yourself with the icons and their meaning before starting your study. 

 

 

 
 

Activity Assessment Assignment Case study 

 

 

  

Discussion Objectives Help Note it! 

   
 

Outcomes Reading Reflection Study skills 

 
   

Summary Terminology Time Tip 

  
 

 

Computer-
Based Learning 

Answers to 
Assessments Video Feedback 





 

 
 Introduction to Android 

 

 
11 

 
 

 

Unit 1 

Introduction to Android 

Introduction 

The purpose of this study unit is to give you the first glimpse of the 
popular Android operating system for mobile devices and tablets. It is 
designed to empower mobile software developers to write innovative 
mobile applications. First part of this unit looks at the version history of 
the Android mobile operating system.  Hence, you will be able to 
compare different mobile operating systems with unique features of 
Android. 
The next part of the unit will help you to identify the devices that run 
Android as the Operating System with its open and customizable nature. 
Furthermore, at the end of this unit, you would be able to have an idea 
about the available categories of applications in Google Play. 

One video material will be provided with this unit and you are expected 
to watch this and complete the relevant activities. 

Upon completion of this unit you should be able to: 

 

Outcomes  

▪ describe how versioning and naming of Android Operating Systems 
has evolved. 

▪ explain the unique features of Android OS comparing to existing 
mobile Operating Systems. 

▪ identify the devices that run Android as the Operating System. 

▪ identify the types of applications run on top of Android devices. 

 

 

Terminology  

IDE: Integrated Development Enviornment to write, 
compile and and execute programs 

app: mobile application software 

API: Application Program Interface is a set of 
protocols and tools for building software 

Kernel essential core of an operating system 



 

 

Unit 1 Introduction to Android 
 

 

12 
 

 
 

 1.1 Android as a popular mobile platform 

Android is an open-source operating system for mobile devices such as 
smart phones, smart watches, tablets, and other Android enabled 
platforms including Android TV and Android Auto. Android Auto is a 
smartphone projection standard developed by Google to allow mobile 
devices running the Android operating system (version 5.0 "Lollipop" and 
later) to be operated in automobiles through the dashboard's head 
unit. Android is a Linux based operating system. 

 

“Android is the first truly open and comprehensive platform for 
mobile devices. It includes an operating system, user-interface and 
applications - all of the software to run a mobile phone, but without 
the proprietary obstacles that have hindered mobile innovation.” 

 -By Andy Rubin (Founder of Android Inc.)  

In other words, Android can be defined as a system that includes an open 
source operating system, an open source development platform and 
devices that run the operating system and applications created for it.   

In the next section, we will be discussing about the popularity of Android 
OS among people.  

Rapid innovation 

Android is continuously pushing the boundaries of hardware and software 
forward, to bring new capabilities to users and developers. For developers 
like you, the rapid evolution of Android technology lets you stay in front 
with powerful, differentiated applications. 

Android gives you access to the latest technologies and innovations 
across a multitude of device form factors, chipset architectures, and price 
points. If you are not familiar with the terms, a form factor is the size, 
configuration, or physical arrangement of the device and a price point is a 
point on a scale of possible prices at which something might be marketed. 
The range of features further includes multicore processing and high-
performance graphics, state of the art sensors, vibrant touch-screens, and 
emerging mobile technologies. 

Powerful development framework 

Android facilitate you with everything you need to build best-in-class app 
experiences. It gives you a single application model that lets you deploy 
your apps broadly to hundreds of millions of users across a wide range of 
devices from phones to tablets and beyond. 

Android also gives you tools for creating apps while taking advantage of 
the hardware capabilities available on each device. It automatically adapts 
your User Interface (UI) to look its best on each device, and gives you 
control over UI on different device types. This is further discussed later in 
this material. 



 

 
 Introduction to Android 

 

 
13 

 
 

 

For example, you can create a single app binary that's optimized for both 
phone and tablet form factors. What is a single app binary and how a 
single app binary can be deployed is discussed in a later unit of this 
material.  Android allows you to declare your UI in lightweight sets of 
Extensible Markup Language (XML) resources, one set for parts of the 
UI that are common to all form factors and other sets for optimizations 
specific to phones or tablets. How UI designing is done is further 
explained in a later unit of this material. At runtime, Android applies the 
correct resource sets based on its screen size, density, locale, and so on.  

To help you develop efficiently, the Android Developer Tools offer a full 
Java Integrated development environment (IDE) with advanced features 
for developing, debugging, and packaging Android apps. Using the IDE, 
you can develop on any available Android device or create virtual devices 
that emulate any hardware configuration. 

 

Video V-1:  Course Overview 

You may watch the video on “course overview” before moving 

further and answer the questions in Activity 1.1. 

 URL: https://tinyurl.com/ydhf7mf6 

 

 

 

Activity 

Activity 1.1 
Check the Android version, i.e. Kernel version, in an Android phone.  

What are the other devices you have seen having Android operating 
system? 

 

       1.2 History of Android 

In October, 2003, four computer experts, Andy Rubin, Nick Sears, Rich 
Miner and Chris White founded a software development organization 
Android Inc. in Palo Alto, California, USA. They wanted to make a Linux 
based operating system that can work on digital cameras which can 
connect with computers. However, this plan was not as successful as they 
thought, so they focused on smart phones. 

In August, 2005, Google purchased the Android Inc. and became the 

https://tinyurl.com/ydhf7mf6


 

 

Unit 1 Introduction to Android 
 

 

14 
 

 
 

proprietor of the company. In November, 2007, Google disclosed a 
consortium of different mobile technology providers named Open 
Handset Alliance (OHA) that includes mobile hardware manufacturers 
(HTC, Motorola etc.), chipset manufacturers (Qualcomm, Texas 
Instruments etc.), and telecommunication service providers (T-Mobile 
etc.). There were 34 different companies in OHA consortium that agreed 
to provide a mobile device which does not belongs to a single company as 
iPhone from Apple. But for couple of years Google could not bring any 
mobile under the OHA consortium. In October, 2008, HTC brought first 
smart phone “HTC Dream” in the market which was commercially 

available. At the time when the first version of the Android was unveiled, 
only 35 Android apps were accessible. But today, millions of Android 
applications are available in the market. 

Android has been released in many versions since its inception. Before 
commercialization, many internal alpha versions were released on the 
name of fictional robots (like Astro Boy, Bender, R2-D2 etc.). On 
November 5, 2007 Google released first beta version of Android whose 
Software Development Kit (SDK) was released on November 12, 2007. 
Since then, November 5th is considered as Android’s Birthday.  

Version History  

All versions of Android are released under a confectionary or sweet 
theme; i.e. names of the Android versions are the name of confectionary 
product in alphabetic order. It started with Android 1.5 "Cupcake"; 
versions 1.0 and 1.1 (API version 1 and 2) and they were not released 
under explicit code names.  

API level is mainly the Android version used as an alternative to the 
Android version name (e.g. 3.0, 4.0, 4.4, etc.) where integer numbers are 
applied. This number keeps on increasing with each version, for e.g. 
Android 1.5 is API Level 3; Android 1.6 is API Level 4, and so on. 
Figure 1.1 shows the details of evolution of Android with product name, 
version name, release date and API level. The video V-2 Evolution of 
Android will also take you through the different phases of Android in an 
interesting manner. 

 

Video V-2: Evolution of Android 

Let us watch the vide on “Evolution of Android” before moving 
further and answer the questions in Activity 1.2. 

 URL: https://tinyurl.com/ydhf7mf6 

 

 

https://tinyurl.com/ydhf7mf6


 

 
 Introduction to Android 

 

 
15 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Android Version Evolution 

(Source: Graphic Era Hill University, Dehradun, India. 2016, CC BY 4.0) 

 

With their main features, different versions of Android are summarized in 
the following Table 1.1. You need not to worry if you are not familiar 
with the terms given under features. You can refer this table while 
reading the remaining units of this material as when required. 

 

 



 

 

Unit 1 Introduction to Android 
 

 

16 
 

 
 

Table 1.1: Version history of Android 

 Version 
Name 

Features 

1. API 

Level 1 

This was the first commercial version of Android 
implemented on the mobile device HTC Dream. There 
were many features such as Android Market, Web 
Browser, Digital Camera, Gmail, Google Maps, 
Google Search, Google Talk, Voice Dialer, Google 
Contacts, Google Calendar, Media Player, Wi-Fi and 
Bluetooth support. 

 API 

Level 2 

This version was internally known as “Petite Four”. 
This version resolved many bugs of the previous 
version and added additional features like saving 
attachment in messages, show and hide dial pad etc. 

2. Cupcake This was the first version whose code name was on 
the name of a bakery product. Cupcake was based on 

Linux Kernel 2.6.27. It had the features like third 
party virtual keyboard, screen widgets, copy and paste 
in the browser, autorotation, upload facility on 
YouTube and Picasa, auto pairing for Bluetooth, video 
recording and playback in 3GP and MPEG-4 formats. 

3. Donut This version was based on Linux kernel 2.6.29. Donut  
was  having the  capability  of  speech  and gesture 
support, selecting the multiple photos for deletion, 
support for WVGA screen resolution, etc. 

4. Éclair First version of Eclair (API Level 5) was having 
features  like  Microsoft  Exchange  email  support, 
Bluetooth 2.1, HTML5, Google Map 3.1.2, Live 
wallpapers, optimized hardware speed, support for 
more resolutions, double tap zoom, camera features 
like flash support, digital zoom, white balance, colour 
effect, etc.  

5. Froyo It was based on Linux kernel 2.6.32. and was having 
the features like JIT compilation, Android Cloud to 
Device Messaging (C2DM), push notification, USB 
tethering   and   Wi-Fi   hotspot,   support   for 
alphanumeric passwords, installing apps in external 
memory, Adobe Flash support. It is also known as 
“Frozen Yogurt”. 



 

 
 Introduction to Android 

 

 
17 

 
 

 

6. Ginger- 

Bread 

It was based on Linux kernel 2.6.35. First version of 
Gingerbread (API Level 9) was having updated user 
interface, support for WXGA resolution, NFC and 
native code development; new download manager, 
concurrent garbage collection, native support for new 
sensors like Gyroscope and Barometer, etc.  

7.  Honeycomb It was the first tablet oriented Android update based 
on Linux kernel 2.6.36. “Motorola Xoom” tablet was 
the first device to run this update. This version was 
having the features like holographic interface, System 
Bar, Action Bar, soft navigation button at the bottom 
of the screen, two pane contact and email UI, support 
for multi-core processors, encryption of all user data, 
etc. Second and third versions of Honeycomb were 
Android 3.1 (API Level 12) and Android 3.2 (API 
Level 13) with some bug fixes and enhancements. 

8.  Ice Cream 
Sandwich 

It was based on Linux kernel 3.0.1. It was the last 
version that was supporting Adobe Flash Player. First 
version of Ice Cream Sandwich (API Level 14) was 
having the features like accessing app from lock 
screen, real time speech to text dictation, face unlock, 
built-in photo editor, Wi-Fi Direct, shut down app by 
swipe from recent menu, integrated screenshot 
capture, etc.  

9. Jelly Bean First version of Jelly Bean (API Level 16) was based 
on Linux kernel 3.0.31. It was having “Buttery 
Smooth” UI and other advancements.  Second version 
of Jelly Bean was Android 4.2 – 4.2.2 (API Level 17). 
It was based on Linux kernel 3.4.0 and with some 
features like Group Messaging etc. Third version of 
Jelly Bean was Android 4.3 – 4.3.1(API Level 18) 
with some features like 4K resolution support, native 
emoji support, Dial pad auto complete, etc. 



 

 

Unit 1 Introduction to Android 
 

 

18 
 

 
 

10. Kitkat First version of Kitkat was Android 4.4 - 4.4.4(API 
Level 19). This was based on Linux kernel 3.10. 
This was optimized for larger range of devices than 
previous versions. Recommended RAM for Kitkat is 
512 MB but it can run on minimum 340 MB of 
RAM. It was having different advanced features 
such as public API for developing text messaging 
clients; disable access to battery by third party, very 
elegant UI and much more. Second version of Kitkat 
was Android 4.4W (API Level 20) which was 
designed for wearable extensions like smart watch. 

11. Lollipop First version of Lollipop was Android 5.0-5.0.2 (API 
Level 21). It was based on Linux kernel 3.16.1 and 
built around material design under project Volta to 
improve the battery life. It supports 64 bit CPU, 
trace based Just in Time(JIT) compilation, refreshed 
lock screen and notification tray; third party apps 
can modify the external storage; recently used apps 
remembered after restarting the device; audio I/O 
through USB, smart lock features and HD voice 
calls. Second version of Lollipop was Android 5.1 
(API Level 22) with official support for multiple 
SIM cards, high definition voice calls, replicate the 
silent mode which was removed in API Level 21, 
native Wi-Fi calling etc. 

12. Marshmallow Marshmallow is based on Linux kernel 3.18.10. It is 
released under the code name Android M. This is the 
latest updated version of Android which is having 
the features like native figure print reader, App 
standby feature, Doze mode, Now on Tap feature, 
USB Type-C support, MIDI support, 184 new emoji 
etc 

13. Nougat The latest version of Android with system behaviors 
to save battery and memory. It brings new features 
for performance, productivity and security.  

There are several advantages such as multi-window 
UI, direct reply notifications etc.  

Activity 

Activity 1.2 
Write the Android version name corresponding to following distinct 
features of different versions.  
 



 

 
 Introduction to Android 

 

 
19 

 
 

 

1. First version whose name was on the name of a bakery product.  
2. First version having the capability of speech and gesture support. 
3. First version that is having USB tethering and Wi-Fi hotspot. 
4. This version can work on 340 MB RAM.  
5. This version is built around the API level 5.  
6. This version enables multi-window UI.  

 

In the next section we will be discussing the features of Android. 

 

 1.3 Features of Android 

Android is a powerful operating system with many supporting features for 
mobile application developers. Few of them are listed below in Table 1.2. 

 

 

Table 1.2: Features of Android 

Feature Description 

UI Android provides a variety of pre-built UI components 
such as structured layout objects and UI controls to build 
the graphical user interface for your app. Android also 
provides other UI modules for special interfaces such as 
dialogs, notifications, and menus with its own unique 
effects and animations. 

Connectivity Android supports connectivity technologies including for 
Wide Area Networks (WAN) like GSM, 3G, 4G and 
CDMA. Also it is supporting for Wi-Fi and Ethernet as 
Local Area Network (LAN) technologies. Apart from 
that Android has support for Bluetooth as a Personal 
Area Network (PAN). Also newer versions support for 
Near Field Communication (NFC). 



 

 

Unit 1 Introduction to Android 
 

 

20 
 

 
 

Storage Android provides several options for you to save 
persistent application data. The solution you choose 
depends on your specific needs, such as whether the data 
should be private to your application or accessible to 
other applications (and the user) and how much space 
your data requires. 

Your data storage options are the following: Shared 
Preferences, Internal Storage, External Storage, SQLite 
Databases, Network Connection, Cloud storage 

Media 
support 

Media format support built into the Android platform. 

Audio - MP3, MIDI 

Images – JPEG, GIF, PNG, BMP 

Video - MPEG-4 SP 

(More media format support built into the Android 
platform will be discussed in future units) 

 

Feature Description 

Messaging Short Message Service (SMS) and Multimedia 
Messaging Service (MMS). Google Cloud Messaging 
(GCM) is also a part of Android Push Messaging 
services. 

Web 
browser 

The web browser available in Android is based on the 
open-source Blink (previously WebKit) layout engine, 
coupled with Chrome's V8 JavaScript engine. It supports 
both Hyper Text Markup Language (HTML5) and 
Cascading Style Sheets (CSS3). 

Multi-touch A multi-touch gesture is when multiple pointers (fingers) 
touch the screen at the same time. Android has native 
support for multi-touch.  

Multi-
tasking 

Multitasking — running multiple tasks simultaneously. 

When an activity has been launched, the user can go to 
Home and launch a second activity without destroying 
the first activity. User can jump from one task to another 
and same time various applications can run 

https://developer.android.com/guide/topics/data/data-storage.html#pref
https://developer.android.com/guide/topics/data/data-storage.html#pref
https://developer.android.com/guide/topics/data/data-storage.html#filesInternal
https://en.wikipedia.org/wiki/Blink_(layout_engine)
https://en.wikipedia.org/wiki/WebKit
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/V8_JavaScript_engine
https://en.wikipedia.org/wiki/Multi-touch
https://developer.android.com/guide/practices/ui_guidelines/activity_task_design.html#tasks


 

 
 Introduction to Android 

 

 
21 

 
 

 

simultaneously.  

Resizable 
widgets 

App Widgets are miniature application views that can be 
embedded in other applications (such as the Home 
screen) and receive periodic updates. These views are 
referred to as Widgets in the user interface, and you can 
publish one with an App Widget provider. 

 
Resizing allows users to adjust the height and/or the 
width of a widget within the constraints of the home 
panel placement grid. You can decide if your widget is 
freely resizable or if it is constrained to horizontal or 
vertical size changes. 

Multi-
Language 

It is always a good idea to make the app localized and 
Android supports multiple languages. 

Android 
Beam 

Android Beam is a device-to-device data transfer tool 
that uses NFC and Bluetooth to send photos, videos, 
contact information, links to webpages, navigate 
directions and more from one device to another just by 
bumping them together. Android framework APIs 
supports these features. 

 

 

Next, we will be comparing Android with other existing mobile operating 
systems. 

 1.4 Comparison of mobile Operating systems 

Google's Android, Apple's iOS, Microsoft’s Windows and BlackBerry 

Ltd’s Blackberry  are operating systems used primarily in mobile devices, 
such as smartphones and tablets. The popular mobile operating systems 
are very similar in some ways. Every OS supports some kind of mobile 
device management, but the way each OS supports is different and one of 
the unique features of Android is its source model. Android has its unique 
features when comparing with proprietary mobile operating systems. 
Table 1.3 shows a comparison of Android with one of the proprietary 
operating system, iOS. 

 



 

 

Unit 1 Introduction to Android 
 

 

22 
 

 
 

Table 1.3: Comparison of mobile operating systems 

 
Android iOS 

Developer Open Handset Alliance  Apple Inc. 

Initial release September 23, 2008 July 29, 2007 

Source model Open source Closed, with open 
source components. 

 

Available on Many phones and tablets, 
LG, HTC, Samsung, Sony, 
Motorola, Nexus, Google 
Glasses 

iPod Touch, iPhone, 
iPad, Apple TV  

Messaging Google Hangouts iMessage 

App store Google Play  Apple app store  

Video chat Google Hangouts Facetime 

OS family Linux Unix-like, based on 
Darwin 

Programmed in C, C++, Java C, C++, Objective-C, 
Swift 

Internet 
browsing 

Google Chrome Mobile Safari  

Voice commands Yes Siri 

Latest stable 
release 

Android 6.0.1 
(Marshmallow), (October 
2015) 

9.3 (March 21, 2016) 

https://en.wikipedia.org/wiki/Open_Handset_Alliance
http://www.diffen.com/difference/Apple_TV_vs_Roku
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Darwin_(operating_system)
http://www.diffen.com/difference/C_vs_C%2B%2B
http://www.diffen.com/difference/Java_%28programming_language%29_vs_JavaScript
http://www.diffen.com/difference/C_vs_C%2B%2B


 

 
 Introduction to Android 

 

 
23 

 
 

 

 
Android iOS 

Device 
manufacturer 

Google, LG, Samsung, 
HTC, Sony, ASUS, 
Motorola, and many more 

Apple Inc 

 

 1.5 Devices that run Android as the Operating System 

Android occupies a large section of the global mobile market.  

Here is a list of devices, which already run Android.  

• Watches  

• Smart glasses 

• Home Appliances – 
E.g.: Refrigerators, 
washing machines, 
oven 

• Cars 

• Cameras 

• Smart TVs 

• Game consoles 

• Home automation 
systems 

• Robots 

Activity 

Activity 1.3 
Give reasons for Android operating system becoming very popular. 

 

1.6 Categories of Android applications 

Google Play is the premier marketplace for selling and distributing 
Android apps. When you publish an app on Google Play, you reach the 
huge installed base of Android. 

Using the Google Play Developer Console, you can choose a category for 
your apps. Users can browse for apps by category using a computer 
(play.google.com) and the Play Store app. 

There are many Android applications in the market. Some of the top 
categories are: 

• Music 

• Multimedia 

• News 

• Sports 



 

 

Unit 1 Introduction to Android 
 

 

24 
 

 
 

• Travel 

• Weather 

• Books 

• Finance 

• Social Media 

Unit summary 

 

 

The objective of this unit is to introduce Android and its capabilities. In 
the first part of this unit, we discussed about the history of Android with 
the names of the various versions of the Android Operating System (OS). 
Then we discussed the features provided by Android to create mobile 
applications and compared different operating systems available for 
mobile devices. Android is a powerful Operating System that supports 
many applications in Smart Phones.    

Reference 

https://developer.android.com/about/android.html (CC-BY)

https://developer.android.com/about/android.html


 

 
 Introduction to Android 

 

 
25 

 
 

 

Unit 2 

Android Architecture 

Introduction 

This unit gives you an overview of the basic internal architecture of 
Android. The first part of this unit focuses on the Android architecture 
and the application framework, which developers can leverage in 
developing Android applications. Later it discusses different types of 
mobile applications with their pros and cons. This unit has one video that 
you need to watch and three activities to complete. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ illustrate the components of Android Operating System. 

▪ differentiate mobile application development. 

▪ identify the components provided by the application framework. 

 

Terminology 

 

Linux: Name of the operating system that Android is built 
on 

Dalvik: Runtime and Virtual Machine used by the Android 
system for running Android applications 

Native app: apps that are fully programmed in the development 
environment specific to each operating system 

ART: (Android Run Time ) is the successor of Dalvik 
and used in latest versions of Android 

  

2.1 Android Architecture 

The architecture of an Android system is a collection of different layers. 
Each layer has a specific role and set of functionality. Each layer provides 
the functionality to the layer above it.  

As you can see in the Figure 2.1 that Android Architecture (also called 



 

 

Unit 2 Android Architecture 
 

 

26 
 

 
 

Software Stack) has the following layers:  

• Linux Kernel   

• Hardware Abstraction Layer (HAL)  

• Native Libraries  

• Android Run Time  

• Android Application Framework  

• Application Layer 

 

 

Figure 2.1: Android System Architecture 

(Source: https://source.android.com/source/index.html) 

 

Let us discuss each layer one by one. 

Linux Kernel 

Android is designed on the top of Linux Kernel which is an open source 
operating system as explained in the previous unit.  

Basic services like process management, memory management, security 
management, power management and providing hardware driver for 
different devices (like Bluetooth, WI-FI, Camera etc.) are managed by 
Linux Kernel as in Figure 2.2. 

https://source.android.com/source/index.html


 

 
 Introduction to Android 

 

 
27 

 
 

 

 

Figure 2.2: Linux kernel 

(Source: http://androidfulcrum.blogspot.com/2014/02/what-is-android-
architecture.html) 

Linux Kernel never really interacts with the users and developers, but is 
at the heart of the whole system. Its importance stems from the fact that it 
provides the following functions in the Android system: 

• Hardware abstraction 

• Memory management programs 

• Security settings 

• Power management software 

• Other hardware drivers (Drivers are programs that control 
hardware devices.) 

• Support for shared libraries 

• Network stack 

In this section we have learned how Linux is involved with Android. 
Now you need to complete the given activity before reading further in 
this unit. 

Activity 

Activity 2.1 
Explain the role of Linux Kernel in Android 

 

Hardware Abstraction Layer (HAL) 

The Hardware Abstraction Layer (HAL) provides an interface for 
hardware vendors to define and implement the drivers for specific 
hardware without affecting lower level features. HAL implementations 
are packaged into modules, you will find these as files with .so extension 
and loaded by the Android system at the appropriate time. Figure 2.3 
shows the components of Hardware abstraction layer (HAL).  

 

http://androidfulcrum.blogspot.com/2014/02/what-is-android-architecture.html
http://androidfulcrum.blogspot.com/2014/02/what-is-android-architecture.html


 

 

Unit 2 Android Architecture 
 

 

28 
 

 
 

 

Figure 2.3: Hardware abstraction layer (HAL) components 

(Source: https://source.android.com/source/index.html) 

 

Native Libraries 

Native libraries run over the HAL and it consist various C / C++ library 
like libc. It also includes following standard libraries: 

• Secure Sockets Layer (SSL): It is responsible for Internet 
security.  

• Graphics Library: OpenGL and SGL used to create 2D and 
3D graphics.  

• WebKit: It is open source web browser engine that gives the 
functionality to render the web content.  

• SQLite: This is an open source relational database 
management system which is designed to be embedded in 
Android devices.  

• Media Library: These libraries are used to play the 
audio/video media etc. 

The following Figure 2.4 shows the Android library layer and its 
components.  

 

Figure 2.4: Android Libraries Layer 

https://source.android.com/source/index.html


 

 
 Introduction to Android 

 

 
29 

 
 

 

(Source: http://androidfulcrum.blogspot.com/2014/02/what-is-android-
architecture.html) 

Libraries carry a set of instructions to guide the device in handling 
different types of data. For instance, the playback and recording of 
various audio and video formats is guided by the Media Framework 
Library. This layer enables the device to handle different types of data 
with the use of these libraries.  

 

Dalvik Virtual Machine (DVM) 

It is a modified Java virtual machine (JVM) which is introduced for low 
end devices to run application objects efficiently. It is a register based 
virtual machine that is optimized to run multiple objects efficiently. It 
depends on the Linux kernel for efficiently execute the instances because 
memory management and thread management is part of the Linux kernel. 
DVM executes the Dalvik Executable Code (.dex), which is optimized to 
take least memory and processing resources. 

 

Android Run Time 

Android Runt time (ART) includes Dalvik Virtual Machine (DVM) and 
Core Libraries which help your apps to run on an Android mobile device.    

 
Figure 2.5: Android Runtime 

(Source:http://androidfulcrum.blogspot.com/2014/02/what-is-android-
architecture.html) 

ART is the successor of Dalvik Virtual machine. ART is the managed 
runtime system that helps to run applications and system services. ART 
and its predecessor Dalvik were originally created specifically for the 
Android project. ART is compatible with DVM, so it helps to run Dalvik 
Executable codes. For devices running Android version 5.0 (API level 
21) or higher, each app runs in its own process and with its own instance 
of the Android Runtime (ART)ART has the following features: 

• Ahead-of-time (AOT) compilation  

• Improved garbage collection  

• Improvements in development and debugging 

http://source.android.com/devices/tech/dalvik/index.html


 

 

Unit 2 Android Architecture 
 

 

30 
 

 
 

 

Core Libraries 

Core libraries are the collection of Android specific core java libraries. 
You will be using these libraries when writing your Android applications 
in later units. 

 

Video V3: Android Architecture 

What you have read upto now regarding Android Architecture is 
presented in this video. After watching the video you may attempt 
bActivity 2.2. 

URL:  https://tinyurl.com/ya7t24et 

 

 

 

Activity 

Activity 2.2 
Describe the use of Dalvik Virtual Machine and Android Runtime in 
Android operating systems. 

 

 

 

Android Application Framework 

Application framework contains the classes used to create an Android 
application. This behaves as an abstraction layer for hardware access. It 
also manages application resources and user interface. Content provider, 
activity manager, fragment manager, telephony manager, location 
manager, package manager, notification manager and view system are the 
parts of Android Application Framework.  

Application Layer 

Figure 2.6 shows the application layer which is the top layer of Android 
architecture. Every application (e.g. Contacts, Browsers, etc.), whether it 
is a native application or a third party application, runs in Application 
layer. Preinstalled applications provided by the vendors are called native 
apps and applications developed by another developer are called third 
party applications. In application layer, third party apps can replace the 
native apps. This is the beauty of Android. 

https://tinyurl.com/ya7t24et


 

 
 Introduction to Android 

 

 
31 

 
 

 

 

 

Figure 2.6: Android application layer 

(Source: http://androidfulcrum.blogspot.com/2014/02/what-is-android-
architecture.html) 

 

2.2 Types of mobile applications 

It is obvious that mobile technologies have been evolving rapidly in 
recent years, with a huge amount of creativity on mobile application 
development. As a result, there are more prominent needs than at any 
other time for a mobile application client platform which can not only 
deliver mobile-optimized user experience, but also support the 
increasingly complex business logic that the application must support. 

It is important to consider various factors related to the purpose of the 
developing the app when deciding between which types of app you 
should build. Therefore, it is important to check your current priorities 
and where you want to be in the future before selecting the app. The 
quality of the user experience you need your app to have, the complexity 
of the features you need for your app to work and the budget, helps you 
choose which approach is best.  

Today, we often speak of three types of mobile applications according to 
how they are developed: native, web and hybrid. Further explanations on 
these types are given below. 

Native apps 

Those that are fully programmed in the development environment 
specific to each operating system. 

Native applications can leverage the full array of features and functions 
available through the mobile device’s core operating system. Generally, 

they are faster and offer a significantly usable interface than the others. 

Advantages:  

• Smooth performance 

• Good user experience 

• App icon available on the device 

• Can receive push notifications 

• Runs inside the operating system 

• Can use the platform APIs 

http://androidfulcrum.blogspot.com/2014/02/what-is-android-architecture.html
http://androidfulcrum.blogspot.com/2014/02/what-is-android-architecture.html


 

 

Unit 2 Android Architecture 
 

 

32 
 

 
 

 

Disadvantages: 

• Developers need to know each of the platforms languages 

• Source code only works on the targeted platform 

• Slower to market due to multiple source codes 

Web apps 

Fully developed in HTML 5, Mobile Web apps offer an attractive option 
for companies that do not want to invest in building native applications 
across four different mobile platforms. Whether getting a new application 
up and running or maintaining or updating an existing mobile solution 
with Mobile Web Apps is simple and inexpensive. Better yet, HTML5-
driven mobile Web apps are cross-platform compatible and, more secure 
than native applications (given that very little data is stored locally on the 
native device.) 

Advantages: 

• Cross platform 

• Single code base 

• Fast to production 

• Lower development cost 

Disadvantages: 

• Sluggish performance 

• Require loading 

• Network connection required 

• Not available in the app stores 

• Extremely limited API access Lives in the browser 

Hybrid apps 

Apps developed partly with the native development environment and 
partly in WEB language (HTML 5). 

Today, technology changes so rapidly that most businesses require 
immense flexibility and scalability to adapt content, design and even 
application architecture. By deploying applications that rely on a robust 
combination of HTML5 Web technologies and native operating system 
features, you preserve a large degree of control over the content and 
design of the solutions we build for mobile platforms. 

Many companies find that this hybrid development process empowers 
them to perform fast, easy, on-demand updates, without losing the 
inherent advantages that come from hosting a solution in the iTunes Apps 
Store or the Android Marketplace. 

Advantages: 

• Single source code 

• Access to all platforms 



 

 
 Introduction to Android 

 

 
33 

 
 

 

• Less time for deployment 

• Available in app store 

• Has application icon on the device 

Disadvantages: 

• Dependent on such as phone gap 

• Middleware may be slow to update 

• More bug prone 

• Some bug fixes need middleware updates 

• Some bug fixes are outside of your control 

• Slower performance 

• More issues from device fragmentation 

Each has its positives and negatives that can and should influence the 
decision when making a choice for development. Which is most 
appropriate will vary based on your particular requirements. The Table 
2.1 shows a summary of the features discussed in each type.  

 

Table 2.1: Hybrid vs. Native vs. Mobile Web 

Feature Native HTMAL5 Hybrid 

Graphics Native APIs HTML, 
Canvas, 
SVG 

HTML, 
Canvas, SVG 

App performance Fast Moderate Moderate 

Distribution App 
Store/Market 

Web App 
Store/Market 

Native look and feel Native Emulated Emulated 

Camera Yes No Yes 

Push Notifications Yes No Yes 

File upload Yes Yes Yes 

Contacts, calendar Yes No Yes 

Connectivity Online and 
offline 

Mostly 
online 

Online and 
offline 

Development skills 
needed 

XML, Java 
HTML5, 
CSS, 
Javascript 

HTML5, CSS, 
Javascript 

Geolocation Yes Yes Yes 

Activity 



 

 

Unit 2 Android Architecture 
 

 

34 
 

 
 

Activity 2.3 
Differentiate native, web, and hybrid mobile apps by stating the 
advantages, disadvantages and special features. 

2.3 Application Fundamentals 

Android apps are written in the Java programming language. The 
Android SDK tools compile your code along with any data and resource 
files into an APK: an Android package, which is an archive file with an 
.apk suffix. One APK file contains all the contents of an Android app and 
this is the file that Android-powered devices use to install the app. 

• Once installed on a device, each Android app lives in its own 
security sandbox 

• The Android operating system is a multi-user Linux system 
in which each app is a different user. 

• By default, the system assigns each app a unique Linux user 
ID (the ID is used only by the system and is unknown to the 
app). The system sets permissions for all the files in an app 
so that only the user ID assigned to that app can access them. 

• Each process has its own virtual machine (VM), so an app's 
code runs in isolation from other apps. 

• By default, every app runs in its own Linux process. Android 
starts the process when any of the app's components need to 
be executed, then shuts down the process when it's no longer 
needed or when the system must recover memory for other 
apps. 

In this way, the Android system implements the principle of least 
privilege. That is, each app, by default, has access only to the components 
that it requires to do its work and no more. This creates a very secure 
environment in which an app cannot access parts of the system for which 
it is not given permission. 

However, there are ways for an app to share data with other apps and for 
an app to access system services: 

• It's possible to arrange for two apps to share the same Linux 
user ID, in which case they are able to access each other's 
files. To conserve system resources, apps with the same user 
ID can also arrange to run in the same Linux process and 
share the same VM (the apps must also be signed with the 
same certificate). 

• An app can request permission to access device data such as 
the user's contacts, SMS messages, the mountable storage 
(SD card), camera, Bluetooth, and more. The user has to 
explicitly grant these permissions.  

That covers the basics regarding how an Android app exists within the 
system.  

The rest of this unit introduces you to: 



 

 
 Introduction to Android 

 

 
35 

 
 

 

• The core framework components that define your app. 

• The manifest file in which you declare components and 
required device features for your app. 

• Resources that are separate from the app code and allow your 
app to gracefully optimize its behaviour for a variety of 
device configurations. 

App components are the essential building blocks of an Android app. 
Each component is a different point through which the system can enter 
your app. 

Not all components are actual entry points for the user and some depend 
on each other, but each one exists as its own entity and plays a specific 
role—each one is a unique building block that helps define your app's 
overall behaviour. 

There are four different types of app components. Each type serves a 
distinct purpose and has a distinct lifecycle that defines how the 
component is created and destroyed. Here are the four types of 
application components. These four components are further explained in 
unit 5. 

Activities 

An activity represents a single screen with a user interface. For example, 
an email app might have one activity that shows a list of new emails, 
another activity to compose an email, and another activity for reading 
emails. Although the activities work together to form a cohesive user 
experience in the email app, each one is independent of the others. As 
such, a different app can start any one of these activities (if the email app 
allows it). For example, a camera app can start the activity in the email 
app that composes new mail, in order for the user to share a picture. 

An activity is implemented as a subclass of Activity and you can learn 
more about activity lifecycle in the next unit. 

Services 

A service is a component that runs in the background to perform long-
running operations or to perform work for remote processes. A service 
does not provide a user interface. For example, a service might play 
music in the background while the user is in a different app, or it might 
fetch data over the network without blocking user interaction with an 
activity. Another component, such as an activity, can start the service and 
let it run or bind to it in order to interact with it. 

A service is implemented as a subclass of Service and you can learn more 
about it in the Services developer guide. 

Content providers 

A content provider manages a shared set of app data. You can store the 



 

 

Unit 2 Android Architecture 
 

 

36 
 

 
 

data in the file system, SQLite database, on the web, or any other 
persistent storage location your app can access. Through the content 
provider, other apps can query or even modify the data (if the content 
provider allows it). For example, the Android system provides a content 
provider that manages the user's contact information. As such, any app 
with the proper permissions can query part of the content provider (such 
as contact data) to read and write information about a particular person. 

Content providers are also useful for reading and writing data that is 
private to your app and not shared. For example, the Note Pad sample app 
uses a content provider to save notes. 

A content provider is implemented as a subclass of ContentProvider and 
must implement a standard set of APIs that enable other apps to perform 
transactions. For more information, see the Content Providers developer 
guide. 

Broadcast receivers 

A broadcast receiver is a component that responds to system-wide 
broadcast announcements. Many broadcasts originate from the system—
for example, a broadcast announcing that the screen has turned off, the 
battery is low, or a picture was captured. Apps can also initiate 
broadcasts—for example, to let other apps know that some data has been 
downloaded to the device and is available for them to use. Although 
broadcast receivers don't display a user interface, they may create a status 
bar notification to alert the user when a broadcast event occurs. More 
commonly, though, a broadcast receiver is just a "gateway" to other 
components and is intended to do a very minimal amount of work. For 
instance, it might initiate a service to perform some work based on the 
event. 

Unit summary 

 

 

The objective of this study unit was to introduce the architecture of 
Android. In the first part of this study unit, we discuss about the different 
types of layers of Android operating system and the role of each layer 
with functionalities. Further, it discussed about the three types of mobile 
applications: native, web and hybrid. The rest of the unit discussed about 
the fundamental components of an Android application.  

References 

https://source.android.com/devices/  (CC-BY) 
http://androidfulcrum.blogspot.com/2014/02/what-is-android-
architecture.html (CC-BY) 
https://source.android.com/source/index.html (CC-BY) 

 

https://source.android.com/devices/
http://androidfulcrum.blogspot.com/2014/02/what-is-android-architecture.html
http://androidfulcrum.blogspot.com/2014/02/what-is-android-architecture.html
https://source.android.com/source/index.html


 

 
 Introduction to Android 

 

 
37 

 
 

 

 

Unit 3 

Activity lifecycle 

Introduction 

In this unit you will be exploring the Activity Lifecycle of an Android 
application. After an introduction to Activity, Activity life cycle and life 
cycle methods are discussed. By watching the screen cast developed for 
this particular unit, you will get a better understanding of how activity 
lifecycle works. The demonstration on how to determine the inter-process 
dependencies at runtime will also be further explained in the screencast. 

Upon completion of this unit you will be able to: 

 

            Outcomes 

 

▪ Sketch the activity life cycle diagram and identify the components. 

▪ List the status of the activity life cycle and describe each status related 
to the working mobile application. 

▪ Explain the process of the activity life cycle, foreground, visible, 
background and empty processes. 

 

 

          Terminology 

 

activity: Activity is an application component that provides 
a screen with which users can interact 

life cycle: journey of an Activity passing through different 
stages of life  

3.1 What is an Activity in Android? 

An Activity in Android is an application component that provides a 
screen with which users can interact in order to do something, such as 
dial the phone, take a photo, send an email, or view a map as explained in 
the previous unit. Each activity is given a window in which to draw its 
user interface. The window typically fills the screen, but may be smaller 
than the screen and float on top of other windows.  



 

 

Unit 3 Android Architecture 
 

 

38 
 

 
 

When you open an application, the very first screen that appears in front 
of you, is called a default Activity (or Main Activity). There can be more 
than one loosely coupled Activities in your application. Generally, as the 
complexity of an application increases, the need of number of Activities 
increases proportionally. 

Activity 

Activity 3.1 

Give an example of an Activity of an Android application 

 

 

Now you have an idea about what an Activity is. Let us look into more 
details about how Activities are interrelated. An Activity can start another 
Activity to perform some actions. If it does so then system stops the 
current Activity and preserves it in a stack called activity stack which will 
be discussed in the next section.  

 

Activity Stack 

Typically, one activity in an application is specified as the "main" 
activity, which is presented to the user when launching the application for 
the first time. Each activity can then start another activity in order to 
perform different actions. Each time a new activity starts, the previous 
activity is stopped, but the system preserves the activity in a stack called 
activity stack or "back stack". It is illustrated in the Figure 3.1. 

 

Figure 3.1: Activity Stack 

 

When a new activity starts, it is pushed into the back stack and takes user 
focus. The back stack abides to the basic "last in, first out" stack 
mechanism, so that when the user is done with the current activity and 
presses the Back button, it is popped from the stack and the previous 
activity resumes. The old activities are destroyed by the OS to free up 



 

 
 Introduction to Android 

 

 
39 

 
 

 

memory. But activity stack keeps activity reference and re-launch an 
activity when needed. 

Activity 

Activity 3.2  

Draw and briefly explain, how each new activity in a task adds an item to 
the back stack by referring to the following link. 

https://developer.android.com/guide/components/tasks-and-back-
stack.html 

Hint: You can consider three activities at a time and progress between 
them 

 

Once an activity is launched, it goes through a lifecycle called Activity 
Lifecycle; a term that refers to the steps the activity progresses through as 
the user (and operating system) interacts with it. 

 

3.2 What is an Activity Lifecycle? 

From its creation to its conclusion, an Activity goes through many stages 
of its life such as start, pause, resume, stop, etc. This journey of Activity 
passing through different stages of life called lifecycle of the Activity. 
Every stage of the Activity lifecycle has a specific method associated to 
it, called call-back method. When an Activity stops and another starts, it 
means a call-back method is called for each Activity. The lifecycle of an 
Activity is managed by the Android run time system. 

Generally, an Activity can remain in following four states: 

• If an activity is in the foreground of the screen (at the top 
of the stack), it is active or running. 

If an activity has lost focus but is still visible (that is, a new non-full-sized 
or transparent activity has focus on top of your activity), it is paused. A 
paused activity is completely alive (it maintains all state and member 
information and remains attached to the window manager), but can be 
killed by the system in extreme low memory situations. 

• If an activity is completely obscured by another activity, 
it is stopped. It still retains all state and member 
information, however, it is no longer visible to the user 
so its window is hidden and it will often be killed by the 
system when memory is needed elsewhere. 

https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/guide/components/tasks-and-back-stack.html


 

 

Unit 3 Android Architecture 
 

 

40 
 

 
 

• If an activity is paused or stopped, the system can drop 
the activity from memory by either asking it to finish, or 
simply killing its process. When it is displayed again to 
the user, it must be completely restarted and restored to 
its previous state. 

• Figures 3.2 depicts the state diagrams to represent the 
different stages of the Activity lifecycle with different 
call-back methods. 

Figure 3.2: A simplified illustration of Activity Lifecycle 

 (Source: http://developer.android.com/training/basics/activity-
lifecycle/starting.html)                         

Video-V4: Android Application Fundamentals 

Let us watch this video and understand the android activity life cycle that 
moves to each state and respond to different call-back methods. This 
video will give you a detailed explanation of an Activity, Activity 
lifecycle, use of back-stack and the different call-back methods of 
Activity Lifecycle. 

URL: https://tinyurl.com/y7czgm5f   

 

 

 

 

Figure 3.3 illustrates the loops and the paths of an activity that might take 
place between states.  

The rectangles represent the call-back methods you can implement to 
perform operations when the activity transitions between states. You can 
see that when a process is killed and the user navigates back to onCreate() 
method. 

http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://developer.android.com/training/basics/activity-lifecycle/starting.html
https://tinyurl.com/y7czgm5f


 

 
 Introduction to Android 

 

 
41 

 
 

 

 

Figure 3.3: Activity Lifecycle 

(Source:http://developer.android.com/guide/components/activities.html) 

 

Now you have learnt the Activity Lifecycle and its states. Next, we are 
going to discuss how these states will be implemented as methods. 

 

Activity Lifecycle Methods 

The Android system defines a lifecycle for activities via predefined 
lifecycle methods. The following Table 3.1 is showing each lifecycle 
call-back method with details such as name of the method, description 
of the method, what method is called after the specified method, method 
is killable or not, etc. 

 

 

 

 

 

http://developer.android.com/guide/components/activities.html


 

 

Unit 3 Android Architecture 
 

 

42 
 

 
 

Table 3.1: A summary of the activity lifecycle's call-back methods 

 

Methods Description Killable 
after? 

Next 

onCreate() Called when the activity is first 
created. This is where you should do 
all of your normal static  set  up  such  
as  create views, bind data to lists, 
and so on. 

 No onStart() 

onRestart() Called after the activity has been 
stopped, just prior to it being started 
again. 

 No onStart() 

onStart() Called just before the activity 
becomes visible to the user. 

No onResume() 
or onStop() 

onResume() Called just before the activity starts 
interacting with the user. At this point 
the activity is at the top of the activity 
stack. 

No onPause() 

onPause() Called when the system is about to 
start resuming another activity. 

Yes onResume() 
or onStop() 

onStop() Called when the activity is no longer 
visible to the user. This may happen 
because it is being destroyed, or 
because another activity (either an 
existing one or a new one) has been 
resumed and is covering it.  

Yes onStart() or 
onDestroy() 

onDestroy() Called before the activity is 
destroyed. This is the final call that 
the activity will receive 

Yes Nothing 

(Source:http://developer.android.com/guide/components/activities.html) 

 

Within the lifecycle call-back methods, you can declare how your activity 
behaves when the user leaves and re-enters the activity. For example, if 
you're building a streaming video player, you might pause the video and 
terminate the network connection when the user switches to another app. 
When the user returns, you can reconnect to the network and allow the 
user to resume the video from the same spot. 

 

To get the detailed information of working of an Activity, pursue the 
following link: 

http://developer.android.com/guide/components/activities.html


 

 
 Introduction to Android 

 

 
43 

 
 

 

http://developer.android.com/guide/components/activities.html 

With the understating of the Activities, Activity Lifecycle and call-back 
methods, we can discuss how these Activities are managed in the 
Android application.  

Managing Activities in the application 

All Android applications started by the user are remained in memory, 
which makes restarting applications faster. But in reality the available 
memory on an Android device is limited. To manage these limited 
resources the Android system is allowed to terminate running processes 
or recycling Android components. 

As stated earlier Android applications run within instances of the Dalvik 
virtual machine with each virtual machine being viewed by the operating 
system as a separate process. If the system identifies that resources on the 
device are reaching capacity it will take steps to terminate processes to 
free up its memory.  

If the Android system needs to free up resources it follows logic. Every 
process gets a priority. If the Android system needs to terminate 
processes it follows the priority system. You will learn the Android 
process states and priority system in next section. 

3.3 What are the Android process states? 

When deciding as to which process to terminate in order to free up 
memory, the system consider both the priority and state of all currently 
running processes. It is considered by Google as an important hierarchy. 
Processes are then terminated starting with the lowest priority and 
working up the hierarchy until sufficient resources have been liberated 
for the system to function. As outlined in Figure 3.4, a process can be in 
one of the following five states at any given time of priority. 

 

Figure: 3.4: Android process states and priority levels 



 

 

Unit 3 Android Architecture 
 

 

44 
 

 
 

 

Let us explain the priority levels more in details below.  

Foreground Process 

These processes are assigned the highest level of priority. It is one that is 
required for what the user is currently doing. Various application 
components can cause its containing process to be considered foreground 
in different ways. A process is considered to be in the foreground if any 
of the following conditions hold: 

● Hosts an activity with which the user is currently interacting. 
● Hosts a Service connected to the activity with which the user is 

interacting. 
● Hosts a Service that has indicated, via a call to startForeground(), 

that termination would be disruptive to the user experience. 
● Hosts a Service executing either its onCreate(), onResume() or 

onStart() callbacks. 
● Hosts a Broadcast Receiver that is currently executing its 

onReceive() method. 
 

Visible Process 

It is a process containing an activity that is visible to the user but is not 
the activity with which the user is interacting. Such a process is 
considered extremely important and will not be killed unless doing so is 
required to keep all foreground processes running. This may occur, for 
example, if the foreground Activity is displayed as a dialog that allows 
the previous Activity to be seen behind it. 

 

Service Process 

A process that contain a Service that has already been started and is 
currently executing is called a service process. However, these processes 
are not directly visible to the user. These processes are generally doing 
things that the user cares about such as background mp3 playback or 
background network data upload or download. The system will always 
keep such processes running unless there is not enough memory to retain 
all foreground and visible processes. 

Background Process 

It is a process that contains one or more activities that are not currently 
visible to the user, and does not host a Service that qualifies for Service 
Process status. These processes have no direct impact on the user 
experience. Provided they implement their Activity life-cycle correctly, 
the system can kill such processes at any time to reclaim memory for one 
of the three previous processes types. 



 

 
 Introduction to Android 

 

 
45 

 
 

 

Empty Process 

Empty processes no longer contain any active application component. 
They are held in memory ready to serve as hosts for newly launched 
applications.  Such processes are, obviously, considered to be the lowest 
priority and are the first to be killed to free up resources.  

Activity 

Activity 3.3  

Select True/False statements 
You can select A) True or B) False for the following statements 
1. There is no guarantee that an activity will be stopped prior to being 

destroyed. 

2. During an activity lifecycle, onStart() is the first callback method 
invoked by the system. 

3. Finish() method is used to close an activity. 

4. Once the onStop() method is called, the activity is no longer visible. 

5. When onPause() method is called in an activity, another activity gets 
into the foreground state. 

Hint check your answers with Answer guide at the end of this unit.  

Now you have learnt how activities are managed. The situation of 
deciding the highest priority process is sometimes complex than outlined 
in the previous section since that processes can often be inter-dependent. 
Inter-Process Dependencies are explained further in the following 
section. 

Inter-Process Dependencies 

Android system will also take into consideration that whether the process 
is in some way serving another process of higher priority. Likewise, when 
deciding as to the priority of a process the system consider inter-
dependencies. 

For instance, consider a service process acting as the content provider for 
a foreground process. The Android documentation states that a process 
can never be ranked lower than another process if it is currently serving a 
foreground process. Thus, the systems manage the activities and memory 
facilitating fast running applications. 

(Source: https://developer.android.com/training/articles/memory.html ) 

https://developer.android.com/training/articles/memory.html


 

 

 Android Architecture 
 

 

46 
 

 
 

Unit summary 

 

 

Mobile applications are common in day to day life. For instance, we can 
recall some of them as Calculator app, Date and activity schedule app, 
Map finding etc. All these application components provides a screen for 
user to interact and perform something with the mobile device. Those 
components are made of multiple activities providing various user 
interfaces. In this unit we described what an activity is and the activity 
lifecycle in a mobile application.  

Activity lifecycle has few states and those states depend on the process 
states of it changes based on pre-defined priority levels. Moreover, 
activity lifecycle has methods which can be called upon wherever 
necessary. The rest of unit discussed the basics of how to build and use an 
activity.  

 

  



 

 
 Introduction to Android 

 

 
47 

 
 

 

Unit 4 

Android Development 
Environment 

Introduction 
In this unit you will be able to get familiar with available Android 
development platforms. You need to watch the video and install the 
required tools to start developing your first Android application. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ explain development platforms and distinguish each against their 
features and capabilities. 

▪ describe the background, and platform versions, system features, 
Android tools for the development environment. 

▪ configure the Android development environment in a computer. 

 

 

Terminology 

 

 

command line: commands entered as inputs without IDE 

SDK: Software Development Kit 

JDK: Java Development Kit 

Android Studio: Official Android platform to develop Android apps 

  

4.1 Reasons for Android Development 

Today, mobile telephones have fundamentally changed the way of people 
interact. It is evident that mobile applications will be the future of 
handheld devices, Television and Automobile. Moreover, developers 
have started embedding Android in home appliances and other devices.  

There are many reasons for the popularity of Android apps, such as: 

• Google provides one window solution, as Play Store, to 
upload and download the application either free or with 



 

 

Unit 4 Android Architecture 
 

 

48 
 

 
 

minimal charges. For uploading and distributing the app, 
developers have no need of any approval of someone. 

• Developer is the owner of his / her app and has the total 
control on product. However, Google has rights to unpublish 
any Android application in play store, if it is not complying 
with Google’s licenses. For instance, if application contains 

malicious code or violate license, Google has right to 
unpublish the application.  

• Android has open source operating system, open source 
software development kit (SDK) and good documentation.  

• Android applications are not limited to mobile devices 
(Phones & Tabs), but can be run on TVs, wearable devices, 
vehicles and even refrigerators.  

• (Source: First Thrust Towards Android, Android 
Programming, Course Material for Open Distance Learning, 
Commonwealth of Learning 2016) 

4.2 Android Development Platforms, Features and Tools 

In unit 2, you have learned Android architecture and major components 
of the Android platform. Let’s look at the Android platform and the 
features they are providing. 

Android Studio is the official IDE for Android development, and with a 
single download it includes everything you need to begin developing 
Android apps as you can see below 

▪ IntelliJ IDE + Android Studio plugin  

▪ Android SDK Tools  

▪ Android Platform-tools  

▪ A version of the Android platform  

▪ Android Emulator with an Android system image including 
Google Play Services 

Android Studio provides tools for building apps on every type of Android 
device. Code editing, debugging, performance tooling, a flexible build 
system, and an instant build or deploy system are included in Android 
studio. Let's see what are the systems requirements to install Android 
studio in different operating systems. 

System Requirements  

System requirements for Windows, Mac OS and Linux are given below. 

Windows - Microsoft® Windows® 7/8/10 (32- or 64-bit) 

• 3 GB RAM minimum, 8 GB RAM recommended; plus 1 GB 
for the Android Emulator 

• 2 GB of available disk space minimum, 



 

 
 Introduction to Android 

 

 
49 

 
 

 

• 4 GB Recommended (500 MB for IDE + 1.5 GB for Android 
SDK and emulator system image) 

• 1280 x 800 minimum screen resolution 

• For accelerated emulator: 64-bit operating system and Intel® 
processor with support for Intel® VT-x, Intel® EM64T 
(Intel® 64), and Execute Disable (XD) Bit functionality 

Mac - Mac® OS X® 10.10 (Yosemite) or higher, up to 10.12 (macOS 
Sierra) 

▪ 3 GB RAM minimum, 8 GB RAM recommended; plus 1 GB 
for the Android Emulator 

▪ 2 GB of available disk space minimum, 

▪ 4 GB Recommended (500 MB for IDE + 1.5 GB for Android 
SDK and emulator system image) 

▪ 1280 x 800 minimum screen resolution 

Linux - GNOME or KDE desktop 

▪ Tested on Ubuntu® 12.04, Precise Pangolin (64-bit 
distribution capable of running 32-bit applications) 

▪ 64-bit distribution capable of running 32-bit applications 

▪ GNU C Library (glibc) 2.19 or later 

▪ 3 GB RAM minimum, 8 GB RAM recommended; plus 1 GB 
for the Android Emulator 

▪ 2 GB of available disk space minimum, 

▪ 4 GB Recommended (500 MB for IDE + 1.5 GB for Android 
SDK and emulator system image) 

▪ 1280 x 800 minimum screen resolution 

For accelerated emulator: Intel® processor with support for Intel® VT-x, 
Intel® EM64T (Intel® 64), and Execute Disable (XD) Bit functionality, 
or AMD processor with support for AMD Virtualization™ (AMD-V™). 

(Source: https://source.android.com/source/requirements.html, CC:BY: 
2.5) 

Command Line Tools 

The Android SDK tools available from the SDK Manager provide 
additional command-line tools to help you during your Android 
development. The tools are classified into two groups: SDK tools and 
platform tools. SDK tools are platform independent and are required no 
matter which Android platform you are developing on. Platform tools are 



 

 

Unit 4 Android Architecture 
 

 

50 
 

 
 

customized to support the features of the latest Android platform. 

Additional Command Line Tools 

The Android SDK tools available from the SDK Manager provide 
additional command-line tools to help you during your Android 
development. The tools are classified into two groups: SDK tools and 
platform tools. SDK tools are platform independent and are required no 
matter which Android platform you are developing on. Platform tools are 
customized to support the features of the latest Android platform. 

SDK Tools 

The SDK tools are installed with the SDK starter package and are 
periodically updated. The SDK tools are required if you are developing 
Android applications. The most important SDK tools include the Android 
SDK Manager (Android sdk), the AVD Manager (Android AVD) the 
emulator (emulator), and the Dalvik Debug Monitor Server (DDMS). A 
short summary of some frequently-used SDK tools is provided below. 

 

Virtual Device Tools 

a) Android Virtual Device Manager 

The AVD Manager provides a graphical user interface in which you can 
create and manage Android Virtual Devices (AVDs) that run in the 
Android Emulator. 

b) Android Emulator (emulator) 

A QEMU(short for quick emulator) based device emulation tool that you 
can use to debug and test your applications in an actual Android run-time 
environment. 

c) mksdcard   

Helps you create a disk image that you can use with the emulator, to 
simulate the presence of an external storage card (such as an SD card). 

 

Development Tools 

Hierarchy Viewer (hierarchyviewer) - Provides a visual representation of 
the layout's View hierarchy with performance information for each node 
in the layout, and a magnified view of the display to closely examine the 
pixels in your layout. 

SDK Manager 

SDK Manager lets you manage SDK packages, such as installed 
platforms and system images. 

sqlite3 - Lets you access the SQLite data files created and used by 
Android applications. 



 

 
 Introduction to Android 

 

 
51 

 
 

 

Debugging Tools 

The debugging tools are further explained in the later units of this 
material. 

a) Android Monitor 

Android Monitor is integrated into Android Studio and provides logcat, 
memory, CPU, GPU, and network monitors for app debugging and 
analysis. 

b) adb 

Android Debug Bridge (adb) is a versatile command line tool that lets 
you communicate with an emulator instance or connected Android-
powered device. It also provides access to the device shell. 

c) Dalvik Debug Monitor Server (DDMS)  

DDMS lets you debug Android apps. 

d) Device Monitor 

Android Device Monitor is a stand-alone tool that provides a graphical 
user interface for several Android application debugging and analysis 
tools. 

e) Systrace 

This tool lets you analyze the execution of your application in the context 
of system processes, to help diagnose display and performance issues. 

f) traceview 

Provides a graphical viewer for execution logs saved by your application. 

g) Tracer for OpenGL ES 

Allows you to capture OpenGL ES(the standard for Embedded 
Accelerated 3D Graphics) commands and frame-by-frame images to help 
you understand how your app is executing graphics commands. 

 

Build Tools 

a) apksigner 

Signs APKs and checks whether APK signatures will be verified 
successfully on all platform versions that a given APK supports. 

b) JOBB 

Allows you to build encrypted and unencrypted APK expansion files in 
Opaque Binary Blob (OBB) format. 

https://www.khronos.org/opengles/
https://www.khronos.org/opengles/


 

 

Unit 4 Android Architecture 
 

 

52 
 

 
 

c) ProGuard 

Shrinks, optimizes, and obfuscates your code by removing unused code 
and renaming classes, fields, and methods with semantically obscure 
names. 

d) zipalign 

Optimizes APK files by ensuring that all uncompressed data starts with a 
particular alignment relative to the start of the file. 

 

Image Tools 

a) Draw 9-patch 

Allows you to easily create a NinePatch (class permits drawing a bitmap 
in nine or more sections) graphic using a WYSIWYG (What You See Is 
What You Get) editor. It also previews stretched versions of the image, 
and highlights the area in which content is allowed. 

b) Etc1tool 

A command line utility that lets you encode PNG images to the ETC1 
compression standard and decode ETC1 compressed images back to 
PNG. 

Platform Tools 

The platform tools are typically updated every time you install a new 
SDK platform. Each update of the platform tools is backward compatible 
with older platforms. Usually, you directly use only one of the platform 
tools—the Android Debug Bridge (adb). Android Debug Bridge is a 
versatile tool that lets you manage the state of an emulator instance or 
Android-powered device. You can also use it to install an Android 
application (APK) file on a device. 

The other platform tools, such as aidl, aapt, dexdump, and dx, are 
typically called by the Android build tools, so you rarely need to invoke 
these tools directly. As a general rule, you should rely on the build tools 
to call them as needed. 

Note: The Android SDK provides additional shell tools that can be 
accessed through adb, such as bmgr and logcat. 

a ) bmgr 

A shell tool you can use to interact with the Backup Manager on Android 
devices supporting API Level 8 or greater. 

b) logcat 

Provides a mechanism for collecting and viewing system debug output. 

(Source: https://developer.android.com/studio/command-line/index.html 
CC:BY: 2.5) 

https://developer.android.com/reference/android/graphics/NinePatch.html
https://developer.android.com/studio/command-line/index.html


 

 
 Introduction to Android 

 

 
53 

 
 

 

Now, you have and learnt the systems requirements (hardware/software 
features) to set up the Android development platform and the Android 
command line tools. It is vital to determine the specific features of each 
Android version and how it has been developed to performing better. In 
unit 1 we learnt the history of Android and how each version of Android 
evolved. Next, we will summarize the Android platform versions with 
their unique features. 

 

Android platform versions and specific features 

There are rapid developments and new versions for the Android and 
Table 4.1 summarize the specific features of different Android platform 
versions up to now.  

 

Table 4.1 summary the specific features of different Android platform 
versions  

Android Platform version  Specific  Features  

 

Android 1.6 - Donut   

 

Quick search box 

Screen size diversity 

Android market 

Android 2.1 - Eclair Google maps navigation 

Home screen customization 

Speech-to- Text 

Android 2.2- Froyo Voice actions 

Portable Hotspot 

Performance 

Android 2.3- Gingerbread Gaming APIs 

Near Field Communication (NFC) 

Battery Management 

Android 3.0- Honeycomb Tablet-friendly design 

System bar 

Quick settings 



 

 

Unit 4 Android Architecture 
 

 

54 
 

 
 

Android 4.0- Ice cream 
Sandwich  

Custom home screen 

Data usage control 

Android Beam 

Android 4.1- Jelly Bean Google now 

Actionable Notifications 

Account switching 

Android 4.4- Kitkat Voice: OK Google 

Immersive Design 

Smart Dialer 

Android 5.0- Lollipop Material Design 

Multiscreen 

Notifications 

Android 6.0- Marshmallow Now on tap 

Permissions 

Battery  works smarter 

Android 7.0 - Nougat Multi Locale language settings 

Multi-window view 

Quick switch between apps 

Data Saver 

Notification Controls 

Display Size 

 

You can read more information online about the relative numbers of 
devices that are running different versions in the following link. 

https://developer.android.com/about/dashboards/index.html 

Thus, creating apps in Android for various mobile devices are increasing 
day by day. Since developing native apps is expensive, the demand for 
cross platform app development tools is also increasing.  It is essential to 
know cross platforms and tools for mobile application development to 
develop apps for enhancing the market capacity.  

You can watch the online presentation given in the link below to get 
familiar with the cross platforms for mobile application development. 

bit.ly/XPlatformMobileDev 

https://developer.android.com/about/dashboards/index.html
http://bit.ly/XPlatformMobileDev


 

 
 Introduction to Android 

 

 
55 

 
 

 

 

Activity 

Activity 4.1  
Explore most popular cross platforms and name three major cross 
platforms.  

Briefly describe one of the major cross platform with the features and 
uses of them. 

Hint: Check your answers with Answer guide at the end of this unit.  

 

Now you are aware of the native and cross platform for mobile 
application development.  We will now explore how the development 
environment is set up and configured.  

4.3 Configuring Android Development Environment 

To develop an Android application, first you have to setup the Android 
development environment. 

First download and install the Android Studio, Java and then download 
and install every individual tool (like Java, SDK Manger, DDMS tool, 
AVD Manager, etc.)  

After installing Android tooling, it is possible to integrate development 
with various IDEs like, IntelliJ IDEA, Eclipse variants etc. Otherwise you 
can use any other java IDE or editor tool like notepad to compose the 
code. 

Video - V5: Setting Up Android Development Environment 

URL:  https://tinyurl.com/y9kcehov 

Let us now watch this video of setting up Android development 
environment set-by-step approach. This will help you at set up your 
Android development environment before you start programming with 
Android. 

 

https://tinyurl.com/y9kcehov


 

 

Unit 4 Android Architecture 
 

 

56 
 

 
 

 

Next, we will be using Android Studio to develop the application. 
Android Studio is a native Android IDE that is fully dedicated to Android 
development. ADT Plugin needs to be installed to make it ready for 
Android development. Eclipse is an open source Java IDE that is 
compatible for several platforms. In early days Eclipse was the mostly 

used IDE by developers for Android applications.  

Download and install Java Development Kit (JDK) 

Most of the programming of Android is done using the Java 
programming language. To download latest Java Development Kit, 
follow the link given below. 

http://www.oracle.com/technetwork/java/javase/downloads/index.html 

Now, extract the downloaded zip file and double click on the .exe and 
follow the instructions. 

Download and install Android studio 

You can download the latest Android Studio from the following link: 

http://developer.android.com/sdk/index.html 

Download the executable file from the above mentioned link, double 
click on the file and follow the installation instructions. To install the 
latest “Android Studio” you need to install compatible Java SE 

Development Kit first.  

Online reading: You can pursue the following link to grab the installation 
instructions for Android Studio.  

http://developer.android.com/sdk/installing/index.html 

After installing and when you will start the Android Studio first time, the 
very first window will look like Figure 4.1. 

http://developer.android.com/sdk/installing/index.html


 

 
 Introduction to Android 

 

 
57 

 
 

 

Figure 4.1: First time opening window of Android Studio 

 

When you click on the first option to start a new Android Studio Project, 
multiple windows will pop up one after another to setup a new project. 

Online reading: Android Studio has numerous features. In this course, 
you are going to explore and use many features of Android Studio. For 
the prior reading to understand the Android studio, follow the following 
web link:  

http://developer.android.com/tools/studio/index.html 

Once you install Android Studio, it is easy to keep the Android Studio 
IDE and Android SDK tools up to date with automatic updates and the 
Android SDK Manager. 

Following web page provides update instructions of IDE and Android 
SDK tools. 

https://developer.android.com/studio/intro/update.html#channels 

 

Activity 

 

Activity 4.2 

State the most common tools used in Android application development 

 

 

Video-V6: Install Android for Windows 10 

URL:https://storage.googleapis.com/androiddevelopers/videos/studi
o-install-windows.mp4 

This video will show you how to install and configure the Android 
development environment using Android Studio in Windows 10.  

Furthermore, the following link has videos that shows each step of the 
recommended setup procedure for Mac and Linux. 

https://developer.android.com/studio/install.html 

 

https://developer.android.com/studio/intro/update.html#channels
https://storage.googleapis.com/androiddevelopers/videos/studio-install-windows.mp4
https://storage.googleapis.com/androiddevelopers/videos/studio-install-windows.mp4
https://developer.android.com/studio/install.html


 

 

 Android Architecture 
 

 

58 
 

 
 

Lab Exercise:  

Download and install JDK and the latest Android Studio version to 
configure the development environment. 

 

Now, you are ready to go for making an Android App. 

 

Unit summary 

 

 

The first step to start on Android based application development is to set 
up the development environment. Therefore, it is essential to know how 
to configure development environment and installing tools for Android 
application development. 

 

In this unit, you have learned Android development platforms, tools and 
cross platforms. At the last section of the unit, you learnt about setting up 
the Android development environment by installing the latest JDK and 
Android Studio. It is also important to keep the Android studio IDE and 
Android SDK tools up to date at the development environment.  

  



 

 
 Introduction to Android 

 

 
59 

 
 

 

Unit 5 

Android application fundamentals 

Introduction 

In this unit we describe of the basic app components, additional 
components, resources and the manifest file using Android Studio, which 
is the Open Source platform provided for application developers. This 
unit also provides you an overview of the interaction and the association 
between the components and the application. 

Upon completion of this unit you will be able to: 

 

Outcomes 

 

▪ Explain the activity Components 

▪ Outline the manifest file 

▪ Explain the introduction to AVD 

▪ Create an Android Virtual Device to simulate a device and to display 
on the development computer 

 

Terminology 

 

 

 

Manifest Filbe: file containing metadata for a group files that are 
part of a coherent unit 

Bound Services: Server in a client-server interface 

RPC: Remote Procedure Call  

API: Application Programming Interface 

 

5.1 Basic App Components 

As you already learnt in Unit 2, there are four types of app components 
and they are: 

• Activities 

• Services 

• Content Providers 

• Broadcast Receivers 



 

 

Unit 5 Android application fundamentals 
 

 

60 
 

 
 

Activities 

An activity is the entry point for interacting with the user. As explained in 
unit 2,it represents a single screen with a user interface. An activity 
facilitates the following key interactions between system and app: 

• Keeping track of what the user currently cares about (what is on 
screen) to ensure that the system keeps running the process that is 
hosting the activity. 

• Knowing that previously used processes contain things the user 
may return to (stopped activities), and thus more highly prioritize 
keeping those processes around. 

• Helping the app handle having its process is killed so the user can 
return to activities with their previous state restored. 

• Providing a way for apps to implement user flows between each 
other, and for the system to coordinate these flows. (The most 
classic example here being share.) 

An activity is a single, focused thing that the user can do. Almost all 
activities interact with the user, so the Activity class takes care of creating 
a window for you in which you can place your UI with 
setContentView(View). While activities are often presented to the 
user as full-screen windows, they can also be used in other ways: as 
floating windows (via a theme with windowIsFloating set) or embedded 
inside of another activity (using ActivityGroup).  

There are two methods almost all subclasses of Activity will implement: 

• onCreate(Bundle) is where you initialize your activity. Most 
importantly, here you will usually call setContentView(int) with 
a layout resource defining your UI, and 
using findViewById(int) to retrieve the widgets in that UI that 
ryou need to interact with programmatically. 

• onPause() is where you deal with the user leaving your activity. 
Most importantly, any changes made by the user should at this 
point be committed (usually to the ContentProvider holding the 
data). 

To be of use with Context.startActivity(), all activity classes 
must have a corresponding <activity> declaration in their 
package's AndroidManifest.xml as shown in Program 5.1. An activity 
must be implemented as a subclass of the Activity class. 

 

 

 

 

 

 

https://developer.android.com/reference/android/R.styleable.html#AndroidManifestActivity


 

 
 Introduction to Android 

 

 
61 

 
 

 

public class MainActivity extends Activity { 
   /** Called when the activity is first created. */ 
   @Override 
   public void onCreate(Bundle savedInstanceState) { 
      super.onCreate(savedInstanceState); 
      setContentView(R.layout.activity_main); 
   } 
/** Called when the activity is about to be visible.*/ 
   @Override 
   protected void onStart() { 
      super.onStart(); 
   } 
   /** Called when the activity has become visible. */ 
   @Override 
   protected void onResume() { 
      super.onResume(); 
   } 
  /** Called when another activity is taking focus. */ 
   @Override 
   protected void onPause() { 
      super.onPause();      } 
 /** Called when the activity is no longer visible. */ 
   @Override 
   protected void onStop() { 
      super.onStop(); 
   } 
 /** Called just before the activity is destroyed. */ 
   @Override 
   public void onDestroy() { 
      super.onDestroy();   } 
} 

Program 5.1 Methods in Activity Class 

Source (http://www.androdevelopment.com/android-activities/) 

 

Services 

A service is a general-purpose entry point for keeping an app running in 
the background for all kinds of reasons. As stated in unit 2, it is a 
component that runs in the background to perform long running 
operations or to perform work for remote processes. Another component, 
such as an activity, can start the service and let it run or bind to it in order 
to interact with it. There are two very distinct semantics services that tell 
the system about how to manage an app: Started services tell the system 
to keep them running until their work is completed. This could be to sync 
some data in the background or play music even after the user leaves the 
app. Syncing data in the background or playing music also represents two 
different types of started services that modify how the system handles 



 

 

Unit 5 Android application fundamentals 
 

 

62 
 

 
 

them: 

• Music playback is something the user is directly aware of, so the 
app tells the system this by saying it wants to be foreground with 
a notification to tell the user about it; in this case the system 
knows that it should try really hard to keep that service's process 
running, because the user will be unhappy if it goes away. 

• A regular background service is not something the user is directly 
aware as running, so the system has more freedom in managing 
its process. It may allow it to be killed (and then restarting the 
service sometime later) if it needs RAM for things that are of 
more immediate concern to the user. 

Bound services run because some other app (or the system) has said that 
it wants to make use of the service. This is basically the service providing 
an API to another process. The system thus knows there is a dependency 
between these processes, so if process A is bound to a service in process 
B, it knows that it needs to keep process B (and its service) running for A. 
Further, if process A is something the user cares about, then it also knows 
to treat process B as something the user also cares about. Because of their 
flexibility (for better or worse), services have turned out to be a really 
useful building block for all kinds of higher-level system concepts. Live 
wallpapers, notification listeners, screen savers, input methods, 
accessibility services, and many other core system features are all built as 
services that applications implement and the system binds to when they 
should be running. 

To create a service, you must create a subclass of Service or use one of its 
existing subclasses. In your implementation, you must override some 
callback methods that handle key aspects of the service lifecycle and 
provide a mechanism that allows the components to bind to the service, if 
appropriate. You need to have prior knowledge of applying object 
oriented concepts to do this. These are the most important callback 
methods that you should override: 

onStartCommand() 

The system invokes this method by calling startService() when 
another component (such as an activity) requests that the service 
be started. When this method executes, the service is started and 
can run in the background indefinitely. If you implement this, it 
is your responsibility to stop the service when its work is 
complete by calling stopSelf() or stopService(). If you only want 
to provide binding, you don't need to implement this method. 

onBind() 

The system invokes this method by calling bindService() when 
another component wants to bind with the service (such as to 
perform RPC). In your implementation of this method, you must 
provide an interface that clients use to communicate with the 
service by returning an IBinder. You must always implement this 
method; however, if you don't want to allow binding, you should 
return null. 



 

 
 Introduction to Android 

 

 
63 

 
 

 

onCreate() 

The system invokes this method to perform one-time setup 
procedures when the service is initially created (before it calls 
either onStartCommand() or onBind()). If the service is already 
running, this method is not called. 

onDestroy() 

The system invokes this method when the service is no longer 
used and is being destroyed. Your service should implement this 
to clean up any resources such as threads, registered listeners, or 
receivers. This is the last call that the service receives. 

If a component starts the service by calling startService() (which 
results in a call to onStartCommand()), the service continues to 
run until it stops itself with stopSelf() or another component stops 
it by calling stopService(). 

If a component calls bindService() to create the service and 
onStartCommand() is not called, the service runs only as long as 
the component is bound to it. After the service is unbound from 
all of its clients, the system destroys it. 

Traditionally, there are two classes you can extend to create a started 
service named Service and IntentService. 

The Service is the base class for all services (shown in Program 5.2). 
When you extend this class, it is important to create a new thread in 
which the service can complete all of its work; the service uses your 
application's main thread by default, which can slow the performance of 
any activity that your application is running. 

 

public class HelloService extends Service { 

  private Looper mServiceLooper; 

  private ServiceHandler mServiceHandler; 

 

  // Handler that receives messages from the thread 

  private final class ServiceHandler extends Handler { 

      public ServiceHandler(Looper looper) { 

          super(looper); 

      } 

      @Override 

      public void handleMessage(Message msg) { 

 

 // Normally we would do some work here, like download a 

//file. For our sample, we just sleep for 5 seconds. 
          try { 

              Thread.sleep(5000); 



 

 

Unit 5 Android application fundamentals 
 

 

64 
 

 
 

          } catch (InterruptedException e) { 

              // Restore interrupt status. 

              Thread.currentThread().interrupt(); 

          } 

// Stop the service using the startId, so that we don't stop 

//the service in the middle of handling another job 
          stopSelf(msg.arg1); 

      } 

  } 

  @Override 

  public void onCreate() { 

// Start up the thread running the service.  Note that we 

//create a separate thread because the service normally runs 

//in the process's main thread, which we don't want to 

//block.  We also make it background priority so CPU-

//intensive work will not disrupt our UI. 
 
    HandlerThread thread = new   
HandlerThread("ServiceStartArguments", 
            Process.THREAD_PRIORITY_BACKGROUND); 
    thread.start(); 
 
// Get the HandlerThread's Looper and use it for our 
//Handler 
    mServiceLooper = thread.getLooper(); 
    mServiceHandler = new 
ServiceHandler(mServiceLooper); 
  } 
  @Override 
  public int onStartCommand(Intent intent, int flags, 
int startId) { 
      Toast.makeText(this, "service starting", 
Toast.LENGTH_SHORT).show(); 
 

// For each start request, send a message to start a 

// job and deliver the start ID so we know which     

// request we're stopping when we finish the job 

      Message msg = mServiceHandler.obtainMessage(); 

      msg.arg1 = startId; 

      mServiceHandler.sendMessage(msg); 

 

// If we get killed, after returning from here, restart 

      return START_STICKY; 

  } 

  @Override 

  public IBinder onBind(Intent intent) { 

      // We don't provide binding, so return null 

      return null; 

  } 

  @Override 

  public void onDestroy() { 



 

 
 Introduction to Android 

 

 
65 

 
 

 

    Toast.makeText(this, "service done", 

Toast.LENGTH_SHORT).show(); 

  } 

} 

Program 5.2 Service class declaration 

Source(https://developer.android.com/guide/components/services.html) 

 

The IntentService is a subclass of Service that uses a worker thread to 
handle all of the start requests, one at a time (Shown in Program 5.3). 
This is the best option if you don't require that your service handle 
multiple requests simultaneously. Implement onHandleIntent(), which 
receives the intent for each start request so that you can complete the 
background work. 

public class HelloIntentService extends IntentService 

{ 

/** A constructor is required, and must call the super   

 * IntentService(String)constructor with a name for 

the worker thread.*/ 

  public HelloIntentService() { 

      super("HelloIntentService"); 

  } 

/* The IntentService calls this method from the 

default worker thread with the intent that started the 

service. When this method returns, IntentService stops 

the service, as appropriate. */ 

  @Override 

  protected void onHandleIntent(Intent intent) { 

 // Normally we would do some work here, likedownload a 

//file. For our sample, we just sleep for 5 seconds. 
      try { 

          Thread.sleep(5000); 

      } catch (InterruptedException e) { 

          // Restore interrupt status. 

          Thread.currentThread().interrupt(); 

      } 

  } 

} 

Program 5.3 Intent Service subclass declaration 
Source (https://developer.android.com/guide/components/services.html) 

https://developer.android.com/reference/android/app/IntentService.html#IntentService(java.lang.String)
https://developer.android.com/guide/components/services.html


 

 

Unit 5 Android application fundamentals 
 

 

66 
 

 
 

Broadcast receivers 

As already stated in unit 2, broadcast receiver is a component that enables 
the system to deliver events to the app outside of a regular user flow, 
allowing the app to respond to system-wide broadcast announcements. 
Because broadcast receivers are another well-defined entry into the app, 
the system can deliver broadcasts even to apps that aren't currently 
running. So, for example, an app can schedule an alarm to post a 
notification to tell the user about an upcoming event and by delivering 
that alarm to a BroadcastReceiver of the app, there is no need for the app 
to remain running until the alarm goes off. Many broadcasts originate 
from the system for example, a broadcast announcing that the screen has 
turned off, the battery is low, or a picture was captured.  

A broadcast receiver is implemented as a subclass (shown in program 
5.4) of BroadcastReceiver and each broadcast is delivered as 
an Intent object. 

public class MyReceiver extends BroadcastReceiver{ 
   @Override 
   public void onReceive(Context context, Intent 
intent) { 
      // Implement action for received broadcast. 
   } 
} 

Program 5.4 Broadcast receiver subclass 

Source(https://developer.android.com/samples/AppShortcuts/src/co
m.example.android.appshortcuts/MyReceiver.html?hl=pt-br) 

Content providers 

As already stated in unit 2, content provider manages a shared set of app 
data that you can store in the file system, in a SQLite database, on the 
web, or on any other persistent storage location that your app can access. 
There are a few particular things this allows the system to do in managing 
an app: 

• Assigning a Uniform Resource Identifier (URI) does not require 
that the app remain running, so URIs can persist after their 
owning apps have exited. The system only needs to make sure 
that an owning app is still running when it has to retrieve the 
app's data from the corresponding URI. 

• These URIs also provide an important fine-grained security 
model. For example, an app can place the URI for an image it has 
on the clipboard, but leave its content provider locked up so that 
other apps cannot freely access it. When a second app attempts to 
access that URI on the clipboard, the system can allow that app to 
access the data via a temporary URI permission grant so that it is 
allowed to access the data only behind that URI, but nothing else 
in the second app. 



 

 
 Introduction to Android 

 

 
67 

 
 

 

• A unique aspect of the Android system design is that any app can 
start another app’s component. For example, if you want the user 
to capture a photo with the device camera, there's probably 
another app that does that and your app can use it instead of 
developing an activity to capture a photo yourself. You don't 
need to incorporate or even link to the code from the camera app. 
Instead, you can simply start the activity in the camera app that 
captures a photo. When complete, the photo is even returned to 
your app so you can use it. To the user, it seems as if the camera 
is actually a part of your app. 

• When the system starts a component, it starts the process for that 
app if it's not already running and instantiates the classes needed 
for the component. For example, if your app starts the activity in 
the camera app that captures a photo, that activity runs in the 
process that belongs to the camera app, not in your app's process. 
Therefore, unlike apps on most other systems, Android apps don't 
have a single entry point (there's no main() function). 

• Because the system runs each app in a separate process with file 
permissions that restrict access to other apps, your app cannot 
directly activate a component from another app. However, the 
Android system can. To activate a component in another app, 
deliver a message to the system that specifies your intent to start 
a particular component. The system then activates the component 
for you. 

Video -V6: Android Development 

 

URL:  https://tinyurl.com/y9xuh62v 

In this video, we will be introducing the components of the Android 
Application Fundamentals. You may watch the video while reading this 
unit in order to understand the content better. After watching the video 
answer the question in Activity 5.1. 

 

Activity 

Activity 5.1  

Identify the element that is not part of the basic application component of 
an Android application.  

o Activities  

o Services 

o Content Providers 

o Screencast Receivers 

https://tinyurl.com/y9xuh62v


 

 

Unit 5 Android application fundamentals 
 

 

68 
 

 
 

o Broadcast Receivers 

 

5.2 Additional Components 

Other than basic four app components there are few additional 
components as well. In this section we will discuss these additional 
components. 

Application Class 

The Application class in Android is Base class for maintaining global 
application state which contains all other components such as activities 
and services. The Application class, or any subclass of the Application 
class, is instantiated before any other class when the process for your 
application/package is created. 

 
Defining Your Application Class 

If we do want a custom application class, we start by creating a new class 
which extends Android.app.Application  as the following Program 5.5: 

import android.app.Application; 
 
public class MyCustomApplication extends Application { 
// Called when the application is starting, before any 
// other application objects have been created. 
        // Overriding this method is totally optional! 
 @Override 
 public void onCreate() { 
     super.onCreate(); 
            // Required initialization logic here! 
 } 
// Called by the system when the device configuration 
changes //while your component is running. 
        // Overriding this method is totally optional! 
 @Override 
 public void 
onConfigurationChanged(Configuration newConfig) { 
     super.onConfigurationChanged(newConfig); 
 } 
// This is called when the overall system is running 
//low on memory, and would like actively running 
//processes to tighten their belts. 
// Overriding this method is totally optional! 
        @Override 
 public void onLowMemory() { 
     super.onLowMemory(); 
                } 
} 

Program 5.5 Application class 

Source (https://guides.codepath.com/android/Understanding-the-Android-
Application-Class) 



 

 
 Introduction to Android 

 

 
69 

 
 

 

And specify the android:name property in the <application> node 
in AndroidManifest.xml as in code snippet given below. 

 

<application  

   android:name=".MyCustomApplication" 

   android:icon="@drawable/icon"  

   android:label="@string/app_name"  

   ...> 

Source(https://guides.codepath.com/android/Understanding-the-Android-
Application-Class) 

That is all what you need to get started with your custom application. 

 

Fragment 

A Fragment is a piece of an application's user interface or behavior that 
can be placed in an Activity. Interaction with fragments is done 
through FragmentManager, which can be obtained 
via Activity.getFragmentManager() andFragment.getFragmentManager(). 

The Fragment class can be used many ways to achieve a wide variety of 
results. In its core, it represents a particular operation or interface that is 
running within a larger Activity. A Fragment is closely tied to the 
Activity it is in, and cannot be used apart from one. Though Fragment 
defines its own lifecycle, that lifecycle is dependent on its activity: if the 
activity is stopped, no fragments inside of it can be started; when the 
activity is destroyed, all fragments will be destroyed. 

All subclasses of Fragment must include a public no-argument 
constructor. The framework will often re-instantiate a fragment class 
when needed, in particular during state restore, and needs to be able to 
find this constructor to instantiate it. If the no-argument constructor is not 
available, a runtime exception will occur in some cases during state 
restore. 

Fragment Lifecycle 

Though a Fragment's lifecycle is tied to its owning activity, it has its own 
wrinkle on the standard activity lifecycle. It includes basic activity 
lifecycle methods such as onResume(), but also important are methods 
related to interactions with the activity and UI generation. 

The core series of lifecycle methods that are called to bring a fragment up 

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/FragmentManager.html
https://developer.android.com/reference/android/app/Activity.html#getFragmentManager()
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Fragment.html#onResume()


 

 

Unit 5 Android application fundamentals 
 

 

70 
 

 
 

to resumed state (interacting with the user) are: 

1. onAttach(Activity) called once the fragment is associated with 
its activity. 

2. onCreate(Bundle) called to do initial creation of the fragment. 

3. onCreateView(LayoutInflater, ViewGroup, Bundle) creates 
and returns the view hierarchy associated with the fragment. 

4. onActivityCreated(Bundle) tells the fragment that its activity 
has completed its own Activity.onCreate(). 

5. onViewStateRestored(Bundle) tells the fragment that all of the 
saved state of its view hierarchy has been restored. 

6. onStart() makes the fragment visible to the user (based on its 
containing activity being started). 

7. onResume() makes the fragment begin interacting with the user 
(based on its containing activity being resumed). 

As a fragment is no longer being used, it goes through a reverse series of 
callbacks: 

1. onPause() fragment is no longer interacting with the user either 
because its activity is being paused or a fragment operation is 
modifying it in the activity. 

2. onStop() fragment is no longer visible to the user either because 
its activity is being stopped or a fragment operation is modifying 
it in the activity. 

3. onDestroyView() allows the fragment to clean up resources 
associated with its View. 

4. onDestroy() called to do final cleanup of the fragment's state. 

5. onDetach() called immediately prior to the fragment no longer 
being associated with its activity. 

Fragment Layout 

Fragments can be used as part of your application's layout, allowing you 
to better modularize your code and more easily adjust your user interface 
to the screen it is running on. As an example, we can look at a simple 
program consisting of a list of items, and display of the details of each 
item. 

An activity's layout XML can include <fragment> tags to embed 
fragment instances inside of the layout. For example, here is a simple 
layout that embeds one fragment shown in code snippet below: 

 

 



 

 
 Introduction to Android 

 

 
71 

 
 

 

<FrameLayout 

xmlns:android="http://schemas.android.com/apk/res/andr

oid" 

    android:layout_width="match_parent"   

android:layout_height="match_parent"> 

    <fragment 

class="com.example.android.apis.app.FragmentLayout$Tit

lesFragment" 

            android:id="@+id/titles" 

            android:layout_width="match_parent" 

android:layout_height="match_parent" /> 

</FrameLayout> 

Source 
:(https://developer.android.com/reference/android/app/Fragment.html) 

The layout is installed in the activity in the normal way as shown in code 
snippet below: 

@Override 

protected void onCreate(Bundle savedInstanceState) { 

    super.onCreate(savedInstanceState); 

    setContentView(R.layout.fragment_layout); 

} 

Source: 
(https://developer.android.com/reference/android/app/Fragment.html 

View 

This class represents the basic building block for user interface 
components. A View occupies a rectangular area on the screen and is 
responsible for drawing and event handling. View is the base class 
for widgets, which are used to create interactive UI components (buttons, 
text fields, etc.). The ViewGroup subclass is the base class for layouts, 
which are invisible containers that hold other Views (or other 
ViewGroups) and define their layout properties. 

Using Views 

All of the views in a window are arranged in a single tree. You can add 
views either from code or by specifying a tree of views in one or more 
XML layout files. There are many specialized subclasses of views that 
act as controls or are capable of displaying text, images, or other content. 

https://developer.android.com/reference/android/app/Fragment.html
https://developer.android.com/reference/android/app/Fragment.html


 

 

Unit 5 Android application fundamentals 
 

 

72 
 

 
 

Set properties: for example, setting the text of a TextView. The 
available properties and the methods that set them will vary among the 
different subclasses of views. Note that properties that are known at build 
time can be set in the XML layout files. 

Set focus: The framework will handle moving focus in response to user 
input. To force focus to a specific view, call requestFocus(). 

Set up listeners: Views allow clients to set listeners that will be notified 
when something interesting happens to the view. For example, all views 
will let you set a listener to be notified when the view gains or loses 
focus. You can register such a listener 
using setOnFocusChangeListener(android.view.View.OnFocusChangeLi
stener). Other view subclasses offer more specialized listeners. For 
example, a Button exposes a listener to notify clients when the button is 
clicked. 

Set visibility: You can hide or show views using setVisibility(int). 

Note: The Android framework is responsible for measuring, laying out 
and drawing views. You should not call methods that perform these 
actions on views yourself unless you are actually implementing 
a ViewGroup. 

 

Intents and Intent Filters 

An Intent is a messaging object you can use to request an action from 
another app component. Although intents facilitate communication 
between components in several ways, there are three fundamental use-
cases: 

• To start an activity: An Activity represents a single screen in an 
app. You can start a new instance of an Activity by passing 
an Intent to startActivity(). The Intent describes the activity to 
start and carries any necessary data. If you want to receive a 
result from the activity when it finishes, 
call startActivityForResult(). Your activity receives the result as a 
separate Intent object in your 
activity's onActivityResult() callback. For more information, see 
the Activities guide. 

 
• To start a service: A Service is a component that performs 

operations in the background without a user interface. You can 
start a service to perform a one-time operation (such as download 
a file) by passing an Intent tostartService(). The Intent describes 
the service to start and carries any necessary data. If the service is 
designed with a client-server interface, you can bind to the 
service from another component by passing 
an Intent to bindService(). For more information, see 
the Services guide 

 

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/components/fundamentals.html#Components
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html#onActivityResult(int, int, android.content.Intent)
https://developer.android.com/guide/components/activities.html
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)
https://developer.android.com/guide/components/services.html


 

 
 Introduction to Android 

 

 
73 

 
 

 

• To deliver a broadcast: A broadcast is a message that any app 
can receive. The system delivers various broadcasts for system 
events, such as when the system boots up or the device starts 
charging. You can deliver a broadcast to other apps by passing 
an Intent to sendBroadcast(), sendOrderedBroadcast(), 
or sendStickyBroadcast(). 

Intents Types 

There are two types of intents: 

• Explicit intents specify the component to start by name (the 
fully-qualified class name). You'll typically use an explicit 
intent to start a component in your own app, because you 
know the class name of the activity or service you want to 
start. For example, start a new activity in response to a user 
action or start a service to download a file in the 
background. 

• Implicit intents do not name a specific component, but 
instead declare a general action to perform, which allows a 
component from another app to handle it. For example, if 
you want to show the user a location on a map, you can use 
an implicit intent to request that another capable app show a 
specified location on a map. 

When you create an explicit intent to start an activity or service, the 
system immediately starts the app component specified in 
the Intent object. 

When you create an implicit intent, the Android system finds the 
appropriate component to start by comparing the contents of the intent to 
the intent filters declared in the manifest file of other apps on the device. 
If the intent matches an intent filter, the system starts that component and 
delivers it the Intent object. If multiple intent filters are compatible, the 
system displays a dialog so the user can pick which app to use. 

5.3 Resources 
This sits on top of the asset manager of the application (accessible 
through getAssets()) and provides a high-level API for getting typed data 
from the assets. 

The Android resource system keeps track of all non-code assets 
associated with an application. You can use this class to access your 
application's resources. You can generally acquire the Resources instance 
associated with your application with getResources(). 

The Android SDK tools compile your application's resources into the 

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/reference/android/content/Intent.html


 

 

Unit 5 Android application fundamentals 
 

 

74 
 

 
 

application binary at build time. To use a resource, you must install it 
correctly in the source tree (inside your project's res/ directory) and 
build your application. As part of the build process, the SDK tools 
generate symbols for each resource, which you can use in your 
application code to access the resources. 

Using application resources makes it easy to update various 
characteristics of your application without modifying code, and—by 
providing sets of alternative resources—enables you to optimize your 
application for a variety of device configurations (such as for different 
languages and screen sizes). This is an important aspect of developing 
Android applications that are compatible on different types of devices. 

You should always externalize resources such as images and strings from 
your application code, so that you can maintain them independently. 
Externalizing your resources also allows you to provide alternative 
resources that support specific device configurations such as different 
languages or screen sizes, which becomes increasingly important as more 
Android-powered devices become available with different configurations. 
In order to provide compatibility with different configurations, you must 
organize resources in your project's res/ directory, using various sub-
directories that group resources by type and configuration. 

For any type of resource, you can specify default and 
multiple alternative resources for your application: 

• Default resources are those that should be used regardless of the 
device configuration or when there are no alternative resources 
that match the current configuration. 

• Alternative resources are those that you've designed for use with 
a specific configuration. To specify that a group of resources are 
for a specific configuration, append an appropriate configuration 
qualifier to the directory name. 

For example, while your default UI layout is saved in 
the res/layout/ directory, you might specify a different layout to be used 
when the screen is in landscape orientation, by saving it in the res/layout-
land/ directory. Android automatically applies the appropriate resources 
by matching the device's current configuration to your resource directory 
names. 

 



 

 
 Introduction to Android 

 

 
75 

 
 

 

Figure 5.1 Two different devices, each using the default layout (the app 
provides no alternative layouts). 

 

Figure 5.2 Two different devices, each using a different layout provided 
for different screen sizes. 

Figure 5.1: illustrates how the system applies the same layout for two 
different devices when there are no alternative resources available. Figure 
2 shows the same application when it adds an alternative layout resource 
for larger screens. 

The following section provide a complete guide to how you can organize 
your application resources, specify alternative resources, access them in 
your application, and more: 

Providing Resources 

What kinds of resources you can provide in your app, where to save them, 
and how to create alternative resources for specific device configurations. 

Accessing Resources 

How to use the resources you've provided, either by referencing them 
from your application code or from other XML resources. 

Handling Runtime Changes 

How to manage configuration changes that occur while your Activity is 
running. 

Localization 

A bottom-up guide to localizing your application using alternative 
resources. While this is just one specific use of alternative resources, it is 
very important in order to reach more users. 

Complex XML Resources 

An XML format for building complex resources like animated vector 
drawables in a single XML file. 

Resource Types 

A reference of various resource types you can provide, describing their 



 

 

Unit 5 Android application fundamentals 
 

 

76 
 

 
 

XML elements, attributes, and syntax. For example, this reference shows 
you how to create a resource for application menus, drawables, 
animations, and more. 

Activity 

Activity 5.2 

Explain how you can organize your application resources.  

 

 

5.4 Android Manifest 
Every application must have an AndroidManifest.xml file (with 
precisely that name) in its root directory. The manifest file provides 
essential information about your app to the Android system, which the 
system must have before it can run any of the app's code. 

Among other things, the manifest file does the following: 

• It names the Java package for the application. The package name 
serves as a unique identifier for the application. 

• It describes the components of the application, which include the 
activities, services, broadcast receivers, and content providers 
that compose the application. It also names the classes that 
implement each of the components and publishes their 
capabilities, such as the Intent messages that they can handle. 
These declarations inform the Android system of the components 
and the conditions in which they can be launched. 

• It determines the processes that host the application components. 

• It declares the permissions that the application must have in order 
to access protected parts of the API and interact with other 
applications. It also declares the permissions that others are 
required to have in order to interact with the application's 
components. 

• It lists the Instrumentation classes that provide profiling and other 
information as the application runs. These declarations are 
present in the manifest only while the application is being 
developed and are removed before the application is published. 

• It declares the minimum level of the Android API that the 
application requires. 

• It lists the libraries that the application must be linked against. 



 

 
 Introduction to Android 

 

 
77 

 
 

 

 
Manifest file structure 

The code snippet below shows the general structure of the manifest file 
and every element that it can contain. Each element, along with all of its 
attributes, is fully documented in a separate file. 

 

<?xml version="1.0" encoding="utf-8"?> 
<manifest> 
    <uses-permission /> 
    <permission /> 
    <permission-tree /> 
    <permission-group /> 
    <instrumentation /> 
    <uses-sdk /> 
    <uses-configuration />   
    <uses-feature />   
    <supports-screens />   
    <compatible-screens />   
    <supports-gl-texture />   
 
    <application> 
 
        <activity> 
            <intent-filter> 
                <action /> 
                <category /> 
                <data /> 
            </intent-filter> 
            <meta-data /> 
        </activity> 
 
        <activity-alias> 
            <intent-filter> . . . </intent-filter> 
            <meta-data />           
        </activity-alias> 
      
 <service> 
            <intent-filter> . . . </intent-filter> 
            <meta-data/> 
        </service> 
 
        <receiver> 
            <intent-filter> . . . </intent-filter> 
            <meta-data /> 
        </receiver> 
 
        <provider> 
            <grant-uri-permission /> 
            <meta-data /> 
            <path-permission /> 

https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/guide/topics/manifest/uses-permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-tree-element.html
https://developer.android.com/guide/topics/manifest/permission-group-element.html
https://developer.android.com/guide/topics/manifest/instrumentation-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide/topics/manifest/uses-configuration-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/supports-screens-element.html
https://developer.android.com/guide/topics/manifest/compatible-screens-element.html
https://developer.android.com/guide/topics/manifest/supports-gl-texture-element.html
https://developer.android.com/guide/topics/manifest/application-element.html
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/action-element.html
https://developer.android.com/guide/topics/manifest/category-element.html
https://developer.android.com/guide/topics/manifest/data-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/meta-data-element.html
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/activity-alias-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/meta-data-element.html
https://developer.android.com/guide/topics/manifest/activity-alias-element.html
https://developer.android.com/guide/topics/manifest/service-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/meta-data-element.html
https://developer.android.com/guide/topics/manifest/service-element.html
https://developer.android.com/guide/topics/manifest/receiver-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/meta-data-element.html
https://developer.android.com/guide/topics/manifest/receiver-element.html
https://developer.android.com/guide/topics/manifest/provider-element.html
https://developer.android.com/guide/topics/manifest/grant-uri-permission-element.html
https://developer.android.com/guide/topics/manifest/meta-data-element.html
https://developer.android.com/guide/topics/manifest/path-permission-element.html


 

 

Unit 5 Android application fundamentals 
 

 

78 
 

 
 

        </provider> 
        <uses-library /> 
    </application> 
</manifest> 

Source: (https://developer.android.com/guide/topics/manifest/manifest-
intro.html) 

5.5 File conventions 
This section describes the conventions and rules that apply generally to 
all of the elements and attributes in the manifest file. 

Elements 

Only the <manifest> and <application> elements are required. They each 
must be present and can occur only once. Most of the other elements can 
occur many times or not at all. However, at least some of them must be 
present before the manifest file becomes useful. 

If an element contains anything at all, it contains other elements. All of 
the values are set through attributes, not as character data within an 
element. 

Elements at the same level are generally not ordered. For example, 
the <activity>, <provider>, and <service> elements can be intermixed in 
any sequence. There are two key exceptions to this rule: 

• An <activity-alias> element must follow the <activity> for which 
it is an alias. 

• The <application> element must be the last element inside 
the <manifest> element. In other words, 
the </application> closing tag must appear immediately 
before the </manifest> closing tag. 

Attributes 

In a formal sense, all attributes are optional. However, there are some 
attributes that must be specified so that an element can accomplish its 
purpose. Use the documentation as a guide. For truly optional attributes, 
it mentions a default value or states what happens in the absence of a 
specification. 

Except for some attributes of the root <manifest> element, all attribute 
names begin with an android:prefix. For 
example, android:alwaysRetainTaskState. Because the prefix 
is universal, the documentation generally omits it when referring to 
attributes by name. 

Declaring class names 

Many elements correspond to Java objects, including elements for the 
application itself (the <application> element) and its principal 

https://developer.android.com/guide/topics/manifest/provider-element.html
https://developer.android.com/guide/topics/manifest/uses-library-element.html
https://developer.android.com/guide/topics/manifest/application-element.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html


 

 
 Introduction to Android 

 

 
79 

 
 

 

components: activities (<activity>), services (<service>), broadcast 
receivers (<receiver>), and content providers (<provider>). 

If you define a subclass, as you almost always would for the component 
classes (Activity, Service, BroadcastReceiver, and ContentProvider), the 
subclass is declared through a name attribute. The name must include the 
full package designation. For example, a Service subclass might be 
declared as follows: 

<manifest . . . > 
    <application . . . > 
        <service 
android:name="com.example.project.SecretService" . . . 
> 
            . . . 
        </service> 
        . . . 
    </application> 
</manifest> 

Source (https://developer.android.com/guide/topics/manifest/manifest-
intro.html) 

However, if the first character of the string is a period, the application's 
package name (as specified by the 
<manifest> element's package attribute) is appended to the string. The 
following assignment is the same as that shown above: 

<manifest package="com.example.project" . . . > 

    <application . . . > 

        <service android:name=".SecretService" . . . > 

            . . . 

        </service> 

        . . . 

    </application> 

</manifest> 

Source (https://developer.android.com/guide/topics/manifest/manifest-
intro.html) 

When starting a component, the Android system creates an instance of 
the named subclass. If a subclass isn't specified, it creates an instance of 
the base class. 

Multiple values 

If more than one value can be specified, the element is almost always 
repeated, rather than multiple values being listed within a single element. 

https://developer.android.com/guide/topics/manifest/manifest-element.html#package


 

 

Unit 5 Android application fundamentals 
 

 

80 
 

 
 

For example, an intent filter can list several actions: 

<intent-filter . . . > 

    <action android:name="android.intent.action.EDIT" 

/> 

    <action 

android:name="android.intent.action.INSERT" /> 

    <action 

android:name="android.intent.action.DELETE" /> 

    . . . 

</intent-filter> 

Source:(https://developer.android.com/reference/android/content/Intent.h
tml) 

Resource values 

Some attributes have values that can be displayed to users, such as a label 
and an icon for an activity. The values of these attributes should be 
localized and set from a resource or theme. Resource values are 
expressed in the following format: 

@[<i>package</i>:]<i>type</i>/<i>name</i> 

You can ommit the package name if the resource is in the same package 
as the application. The type is a type of resource, such 
as string or drawable, and the name is the name that identifies the 
specific resource. Here is an example: 

<activity android:icon="@drawable/smallPic" . . . > 

Source (https://developer.android.com/guide/topics/manifest/manifest-
intro.html) 

The values from a theme are expressed similarly, but with an 
initial ? instead of @: 

?[<i>package</i>:]<i>type</i>/<i>name</i> 

 

String values 

Where an attribute value is a string, you must use double backslashes (\\) 
to escape characters, such as \\n for a newline or \\uxxxx for a Unicode 
character. 



 

 
 Introduction to Android 

 

 
81 

 
 

 

Activity 

Activity 5.3 
Explain the role of AndroidManifest.xml file in an Android application. 

 

 

Unit summary 

 

 

First part of this unit gave you an in-depth knowledge about the four main 
types of mobile application components.  This unit also introduced you to 
the methods that was facilitated by Android and the elements used in any 
Android application development such as fragments and intents. You will 
need to refer to this unit when you are writing your application to 
understand the process beneath each method while executing.  

 

 

  



 

 

Unit 6 Android Development 
 

 

82 
 

 
 

Unit 6  

Android Development 

Introduction 

Now you are aware that Android applications can be developed using 
Android Studio. You have also learnt fundamentals of Android App 
design. How to build a simple user interface and handle user input will be 
described further in this unit. 

Particularly, you will apply Java features in the context of core Android 
components (such as Activities and basic UI elements) by applying 
common tools (such as Android Studio) needed to develop Java programs 
and useful Android apps.  

Upon completion of this unit you will be able to: 

 

Outcomes 

 

▪ Develop and run an Android application. 

▪ Run the developed application in both on the actual device and in 
the emulator. 

 

Terminology 

 

AVD: Android Virtual Emulator 

UI: User Interface 

XML: eXtensible Markup Language 

6.1 Creating Your First Program 

This unit shows you how to create a new Android project with Android 
Studio and describes some of the files in the project. 

In Android Studio, create a new project 

• In the New Project screen, enter the following values: 

Application Name: "My First App" 
Company Domain: "example.com" 

Android Studio fills in the package name and project location for you, 
but you can edit these if you'd like. 

• Click Next. 

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html


 

 
 Introduction to Android 

 

 
83 

 
 

 

• In the Target Android Devices screen, keep the default values 
and click Next. 

The Minimum Required SDK is the earliest version of Android that your 
app supports, which is indicated by the API level. To support as many 
devices as possible, you should set this to the lowest version available 
that allows your app to provide its core feature set. If any feature of your 
app is possible only on newer versions of Android and it’s not critical to 
the core feature set, enable that feature only when running on the versions 
that support it. 

• In the Add an Activity to Mobile screen, select Empty 
Activity and click Next. 

• In the Customize the Activity screen, keep the default values and 
click Finish. 

After some processing, Android Studio opens and displays a "My First 
App" app with default files. You will add functionality to some of these 
files in the following lessons. 

Now take a moment to review the most important files. First, be sure that 
the Project window is open (select View > Tool Windows > Project) and 
the Android view is selected from the drop-down list at the top. You can 
then see the following files: 

app > java > com.example.myfirstapp > MainActivity.java 

This file appears in Android Studio after the New Project wizard finishes. 
It contains the class definition for the activity you created earlier. When 
you build and run the app, the Activity starts and loads the layout file that 
says "Hello World!" 

app > res > layout > activity_main.xml 

This XML file defines the layout of the activity. It contains 
a TextView element with the text "Hello world! 

app > manifests > AndroidManifest.xml 

The manifest file describes the fundamental characteristics of the 
app and defines each of its components. You'll revisit this file as 
you follow these lessons and add more components to your app. 

Gradle Scripts > build.gradle 

Android Studio uses Gradle to compile and build your app. There 
is a build.gradle file for each module of your project, as well as 
a build.gradle file for the entire project. Usually, you're only 
interested in the build.gradle file for the module. 

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html


 

 

Unit 6 Android Development 
 

 

84 
 

 
 

 

Activity 

Activity 6.1 

• Create a simple “Hello World Program” 

 

  

6.2 Building and running the application 
By default, Android Studio sets up new projects to deploy to the 
Emulator or a physical device with just a few clicks. With Instant Run, 
you can push changes to methods and existing app resources to a running 
app without building a new APK, so code changes are visible almost 
instantly. 

To build and run your app, click Run . Android Studio builds your 
app with Gradle, asks you to select a deployment target (an emulator or a 
connected device), and then deploys your app to it. You can customize 
some of this default behaviour, such as selecting an automatic 
deployment target, by changing the run configuration. 

If you want to use the Android Emulator to run your app, you need to 
have an Android Virtual Device (AVD) ready. If you haven't already 
created one, then after you click Run, click Create New Emulator in 
the Select Deployment Target dialog. Follow the Virtual Device 
Configuration wizard to define the type of device you want to emulate. 
For more information, see Create and Manage Virtual Devices. 

Select and build a different module 

If your project has multiple modules beyond the default app 
module, you can build a specific module as follows: 

• Select the module in the Project panel, and then click Build > Make 
Module module-name. 

Android Studio builds the module using Gradle. Once the module is built, 
you can run and debug it if you've built a module for a new app or new 
device, or use it as a dependency if you've built a library or Google Cloud 
module. 

To run a built app module: 

• Click Run > Run and select the module from the Run dialog. 

https://developer.android.com/studio/run/index.html#run-configuration
https://developer.android.com/studio/run/emulator.html
https://developer.android.com/studio/run/managing-avds.html


 

 
 Introduction to Android 

 

 
85 

 
 

 

 
Change the run/debug configuration 

The run/debug configuration specifies the module to run, package to 
deploy, activity to start, target device, emulator settings, logcat options, 
and more. The default run/debug configuration launches the default 
project activity and uses the Select Deployment Target dialog for target 
device selection. If the default settings don't suit your project or module, 
you can customize the run/debug configuration, or even create a new one, 
at the project, default, and module levels. To edit a run/debug 
configuration, select Run > Edit Configurations.  

Change the build variant 

By default, Android Studio builds the debug version of your app, which 
is intended only for testing, when you click Run. You need to build the 
release version to prepare your app for public release. 

To change the build variant Android Studio uses, select Build > Select 

Build Variant in the menu bar (or click Build Variants  in the 
windows bar), and then select a build variant from the drop-down menu. 
By default, new projects are set up with a debug and release build variant. 

Using product flavours, you can create additional build variants for 
different versions of your app, each having different features or device 
requirements.  

Generate APKs 

To create an APK for your app, follow these steps: 

• Select the build variant you want to build from the Build 

Variants  window. 
• Click Build > Build APK in the menu bar. 
• To instead build the APK and immediately run it on a device, 

click Run  in the toolbar. 

All built APKs are saved in project-name/module-
name/build/outputs/apk/. You can also locate the generated 
APKs by clicking the link in the pop-up dialog that appears once the 
build is complete, as shown in figure 2 

 

Monitor the build process 

You can view details about the build process by clicking View > Tool 

Windows > Gradle Console (or by clicking Gradle Console  in the 
tool window bar). The console displays each task that Gradle executes in 

https://developer.android.com/studio/publish/preparing.html


 

 

Unit 6 Android Development 
 

 

86 
 

 
 

order to build your app, as shown in Figure 6.1. 

 

Figure 6.1 The Gradle Console in Android Studio. 

If your build variants use product flavours, Gradle also invokes tasks to 
build those product flavours. To view the list of all available build tasks, 

click View > Tool Windows > Gradle (or click Gradle  in the tool 
window bar). 

If an error occurs during the build process, the Messages window appears 
to describe the issue. Gradle may recommend some command-line 
options to help you resolve the issue, such as --stacktrace or --
debug. To use command-line options with your build process: 

• Open the Settings or Preferences dialog: 

• Navigate to Build, Execution, Deployment > Compiler. 

• In the text field, next to Command-line Options, enter your 
command-line options. 

• Click OK to save and exit. 

Gradle will apply these command-line options the next time you try 
building your app. 

 

Running on the Emulator 

Before you run your app on an emulator, you need to create an Android 
Virtual Device (AVD) definition. An AVD definition defines the 
characteristics of an Android phone, tablet, Android Wear, or Android 
TV device that you want to simulate in the Android Emulator. 

Create an AVD Definition as follows: 

• Launch the Android Virtual Device Manager by selecting Tools > 
Android > AVD Manager, or by clicking the AVD Manager 

icon  in the toolbar. 

• In the Your Virtual Devices screen, click Create Virtual Device. 

https://developer.android.com/tools/devices/index.html
https://developer.android.com/tools/devices/index.html


 

 
 Introduction to Android 

 

 
87 

 
 

 

• In the Select Hardware screen, select a phone device, such as Nexus 
6, and then click Next. 

• In the System Image screen, choose the desired system image for the 
AVD and click Next. (if you don't have a particular system image 
installed, you can get it by clicking the download link.) 

Verify the configuration settings (for your first AVD, leave all the 
settings as they are), and then click Finish. 

 

Create and Manage Virtual Devices 

An Android Virtual Device (AVD) definition lets you define the 
characteristics of an Android phone, tablet, Android Wear, or Android 
TV device that you want to simulate in the Android Emulator. The AVD 
Manager helps you easily create and manage AVDs 

VIEWING AND MANAGING YOUR AVDS 

The AVD Manager lets you manage your AVDs all in one place. 

To run the AVD Manager, do one of the following: 

• In Android Studio, select Tools > Android > AVD Manager. 

• Click AVD Manager  in the toolbar. 

 

The AVD Manager appears as shown in Figure 6.2. 

 

Figure 6.2 AVD manager 

 

It displays any AVDs you have already defined. When you first install 
Android Studio, it creates one AVD. If you defined AVDs for Android 
Emulator 24.0.x or lower, you need to recreate them. 

From this page, you can: 

https://developer.android.com/tools/devices/emulator.html


 

 

Unit 6 Android Development 
 

 

88 
 

 
 

• Define a new AVD or hardware profile. 
• Edit an existing AVD or hardware profile. 
• Delete an AVD or hardware profile. 
• Import or export hardware profile definitions. 
• Run an AVD to start the emulator. 
• Stop an emulator. 
• Clear data and start fresh, from the same state as when you first 

ran the emulator. 
• Show the associated AVD .ini and .img files on disk. 
• View AVD configuration details that you can include in any bug 

reports to the Android Studio team. 

 

Creating an AVD 

You can create a new AVD from the beginning, or duplicate an AVD and 
change some properties. 

To create a new AVD: 

• From the Your Virtual Devices page of the AVD Manager, 
click Create Virtual Device. 

• Alternatively, run your app from within Android Studio. In 
the Select Deployment Target dialog, click Create New 
Emulator. 

Then Select Hardware page appears as shown in Figure 6.3 

 

Figure 6.3: Virtual Device Configuration(Select Hardware) 

 

• Select a hardware profile, and then click ‘Next’. 

https://developer.android.com/studio/run/managing-avds.html#createavd
https://developer.android.com/studio/run/managing-avds.html#createhp
https://developer.android.com/studio/run/managing-avds.html#workingavd
https://developer.android.com/studio/run/managing-avds.html#workinghp
https://developer.android.com/studio/run/managing-avds.html#workingavd
https://developer.android.com/studio/run/managing-avds.html#workinghp
https://developer.android.com/studio/run/managing-avds.html#importexporthp
https://developer.android.com/studio/run/managing-avds.html#emulator
https://developer.android.com/studio/run/managing-avds.html#emulator
https://developer.android.com/studio/run/managing-avds.html#emulator
https://developer.android.com/studio/run/managing-avds.html#workingavd
https://developer.android.com/studio/run/managing-avds.html#workingavd
https://developer.android.com/studio/run/managing-avds.html#copyavd
https://developer.android.com/studio/run/managing-avds.html#viewing
https://developer.android.com/studio/run/index.html#RunningApp


 

 
 Introduction to Android 

 

 
89 

 
 

 

If you don't see the hardware profile you want, you 
can create or import a hardware profile. Then System Image page 
appears as shown in Figure 6.4. 

 

Figure 6.4: Virtual Device Configuration (System Image) 

 

• Select the system image for a particular API level, and then 
click ‘Next’. 

 
The Recommended tab lists recommended system images. The other 
tabs include a more complete list. The right pane describes the 
selected system image. x86 images run the fastest in the emulator. 
If you see Download next to the system image, you need to click it to 
download the system image. You must be connected to the internet to 
download it. 
 
The API level of the target device is important, because your app 
won't be able to run on a system image with an API level that's less 
than that required by your app, as specified in 
the minSdkVersion attribute of the app manifest file. For more 
information about the relationship between system API level 
and minSdkVersion, see Versioning Your Apps. 
 
If your app declares a <uses-library> element in the manifest file, the 
app requires a system image in which that external library is present. 
If you want to run your app on an emulator, create an AVD that 
includes the required library. To do so, you might need to use an add-
on component for the AVD platform; for example, the Google APIs 

https://developer.android.com/studio/run/managing-avds.html#createhp
https://developer.android.com/studio/run/managing-avds.html#importexporthp
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/studio/publish/versioning.html
https://developer.android.com/guide/topics/manifest/uses-library-element.html


 

 

Unit 6 Android Development 
 

 

90 
 

 
 

add-on contains the Google Maps library. 
 

The Verify Configuration page appears as shown in Figure 6.5. 

 

Figure 6.5: Virtual Device Configuration(AVD) 

• Change AVD properties as needed, and then click Finish. 
• Click Show Advanced Settings to show more settings, such as the 

skin. 

The new AVD appears in the Your Virtual Devices page or the Select 
Deployment Target dialog. 

 

To create an AVD starting with a copy: 

• From the Your Virtual Devices page of the AVD Manager, right-
click an AVD and select Duplicate. 

Or click Menu  and select Duplicate. 

The Verify Configuration page appears (See previous image). 

Click Change or Previous if you need to make changes on the System 
Image and Select Hardware pages. 

Make your changes, and then click Finish. 

The AVD appears in the Your Virtual Devices page. 

 

https://developer.android.com/studio/run/managing-avds.html#avdproperties
https://developer.android.com/studio/run/managing-avds.html#viewing
https://developer.android.com/studio/run/managing-avds.html#verifyconfigpage
https://developer.android.com/studio/run/managing-avds.html#systemimagepage
https://developer.android.com/studio/run/managing-avds.html#systemimagepage
https://developer.android.com/studio/run/managing-avds.html#selecthardwarepage


 

 
 Introduction to Android 

 

 
91 

 
 

 

Running and Stopping an Emulator, and Clearing Data 

From the Your Virtual Devices page, you can perform the following 
operations on an emulator: 

• To run an emulator that uses an AVD, double-click the AVD. Or 
click Launch . 

• To stop a running emulator, right-click an AVD and select Stop. Or 

click Menu  and select Stop. 

• To clear the data for an emulator, and return it to the same state as 
when it was first defined, right-click an AVD and select Wipe Data. 

Or click Menu  and select Wipe Data. 

 
Running on the actual device 

When building an Android app, it's important that you always test your 
application on a real device before releasing it to users. This page 
describes how to set up your development environment and Android-
powered device for testing and debugging on the device. 

You can use any Android-powered device as an environment for running, 
debugging, and testing your applications. The tools included in the SDK 
make it easy to install and run your application on the device each time 
you compile. You can install your application on the device directly from 
Android Studio or from the command line with ADB. If you don't yet 
have a device, check with the service providers in your area to determine 
which Android-powered devices are available. 

When building an Android app, it's important that you always test your 
application on a real device before releasing it to users. This page 
describes how to set up your development environment and Android-
powered device for testing and debugging on the device. 

Note: When developing on a device, keep in mind that you should still 
use the Android emulator to test your application on configurations that 
are not equivalent to those of your real device. Although the emulator 
does not allow you to test every device feature, it does allow you to verify 
that your application functions properly on different versions of the 
Android platform, in different screen sizes and orientations, and more. 

Enable Developer mode 

• Android-powered devices have a host of developer options that 
you can access on the phone, which let you: 

• Enable debugging over USB. 

https://developer.android.com/studio/run/managing-avds.html#viewing
https://developer.android.com/tools/devices/emulator.html


 

 

Unit 6 Android Development 
 

 

92 
 

 
 

• Quickly capture bug reports onto the device. 

• Show CPU usage on screen. 

• Draw debugging information on screen such as layout bounds, 
updates on GPU views and hardware layers, and other 
information. 

• Plus many more options to simulate app stresses or enable 
debugging options. 

 

Figure 6.6: Enabling Developer Mode in Mobile 

To access these settings, open the Developer options in the system 
Settings as shown in Figure 6.6. On Android 4.2 and higher, the 
Developer options screen is hidden by default. To make it visible, go to 
Settings > About phone and tap Build number seven times. Return to the 
previous screen to find Developer options at the bottom. 

Running app on the actual device 

• In Android Studio, select your project and click Run  from 
the toolbar. 

• In the Select Deployment Target window, select your device, 
and click OK. 

Android Studio installs the app on your connected device and starts it. 

Activity 

Activity 6.3 

• Build a simple app and run the application on 

1. Emulator 

2. Actual Device 



 

 
 Introduction to Android 

 

 
93 

 
 

 

Unit summary 

 

 

 

In this unit, you learnt how to develop maintainable mobile apps that 
include the core Android components discussed in the previous unit. You 
need to watch the provided video on how to create an app from scratch 
using Android Studio. We also discussed about creating the Android 
Virtual Devices to run, testing and debugging the application.  

Configuring and saving the launch configuration and associating an AVD 
with your project as discussed here will make your debugging and testing 
task easier. You also learnt about different project files that are created 
during the development process of an Android application as well as 
different development tools, Android application components and adding 
permissions to an application. 

 

 

 

  



 

 

Unit 7 Device Compatibility 
 

 

94 
 

 
 

Unit 7 

Device Compatibility 

Introduction 

Android is designed to run on many different types of devices, from 
phones to tablets and televisions. The range of devices provides a huge 
potential audience for the Android applications. In order to be successful 
on all these devices, it provides a flexible user interface that adapts to 
different screen configurations. 

Android provides a dynamic app framework that can provide 
configuration-specific app resources in static files such as different XML 
layouts for different screen sizes. Android loads the appropriate resources 
based on the current device configuration. With some additional app 
resources, developer can publish a single application package (APK) that 
provides an optimized user experience on a variety of devices.  

This unit will be focused on device compatibility. There are two types of 
compatibility device compatibility and app compatibility. 

Hardware manufacturer can build a device that runs the Android 
operating system. Yet, a device is "Android compatible" only if it can 
correctly run apps written for the Android execution environment and 
each device must pass the Compatibility Test Suite (CTS) in order to be 
considered compatible.  

Though Android runs on a wide range of device configurations, some 
features are not available on all devices. For example, some devices may 
not include a compass sensor. If your app's core functionality requires the 
use of a compass sensor, then your app is compatible only with devices 
that include a compass sensor. 

Upon completion of this unit you should be able to: 

 

Outcomes 

▪ identify compatibility of an application with different devices. 

▪ discuss screen configuration for various device sizes and resolutions 

▪ evaluate device compatibility of an application 

 

 

Terminology 

Widget: an application, or a component of an interface, 
that enables a user to perform a function or 
access a service 

platform: where any piece of software is executed 



 

 
 Introduction to Android 

 

 
95 

 
 

 

 screen density: quantity of pixels within a physical area of the 
screen 

resolution: The total number of physical pixels on a screen 

   

7.1 Application availability to devices 

Android supports a variety of features your app can control through 
platform APIs. Some features are hardware-based such as a compass 
sensor, some are software-based such as app widgets, and some features 
dependent on the platform version. You have to control application 
availability to the devices based on the features of your application 
because not every device supports every feature.  

To achieve the largest user-base possible for an app, developer should 
strive to support as many device configurations as possible using a single 
APK. In most situations, it can do by disabling optional features at 
runtime and providing app resources with alternatives for different 
configurations. 

Device characteristics are Device features, Platform version and Screen 
configuration.  

Activity 

Activity 7.1 

State the importance of device configuration to maintain device 
compatibility 

 

7.2 Device Features 

In order to manage your app’s availability based on device features, 
Android defines feature IDs for any hardware or software feature that 
may not be available on all devices. 

For instance, you can prevent users from installing your app when their 
devices do not provide a given feature by declaring it with a <uses-
feature> element in your app's manifest file. 

Example: Declare the compass sensor 

If your app does not make sense on a device that lacks a compass sensor, 
you can declare the compass sensor as required with the following 
manifest tag as shown in the code snippet below. 

https://developer.android.com/guide/topics/resources/providing-resources.html
https://developer.android.com/guide/practices/compatibility.html#Features
https://developer.android.com/guide/practices/compatibility.html#Version
https://developer.android.com/guide/practices/compatibility.html#Screens
https://developer.android.com/guide/practices/compatibility.html#Screens


 

 

Unit 7 Device Compatibility 
 

 

96 
 

 
 

<manifest ... > 
    <uses-
featureandroid:name="android.hardware.sensor.com
pass" 
                  android:required="true"/> 
    ... 
</manifest> 

Google Play Store compares the features that your app requires to the 
features available on each user's device to determine whether your app is 
compatible with that device. If the device does not provide all the features 
your app requires, the user cannot install your app. 

However, if your app's primary functionality does not require a device 
feature, you should set the required attribute to "false" and check for the 
device feature at runtime. If the app feature is not available on the current 
device, gracefully degrade the corresponding app feature. For example, 
you can query whether a feature is available by 
calling hasSystemFeature() like this: 

PackageManager pm = getPackageManager(); 
if(!pm.hasSystemFeature(PackageManager.FEATURE_SENSOR_
COMPASS)){ 
// This device does not have a compass, turn off the  
//compass feature 
    disableCompassFeature(); 
} 

 7.3 Platform Version 

Different devices may run different versions of the Android platform, 
such as Android 4.0 or Android 6.0. Each successive platform version 
often adds new APIs not available in the previous version. To indicate 
which set of APIs are available, each platform version specifies an API 
level.  

For instance, Android 1.0 is API level 1 and Android 6.0 is API level 23 

The API level allows you to declare the minimum version with which 
your app is compatible, using the <uses-sdk>manifest tag and 
its minSdkVersion attribute. 

For example:  

The Calendar Provider APIs were added in Android 4.0 (API level 14). If 
your app cannot function without these APIs, you should declare API 
level 14 as your app's minimum supported version like this: 

 

<manifest ... > 
    <uses-
sdkandroid:minSdkVersion="14"android:targetSdkVe
rsion="19"/> 
    ... 
</manifest> 

https://developer.android.com/reference/android/content/pm/PackageManager.html#hasSystemFeature(java.lang.String)


 

 
 Introduction to Android 

 

 
97 

 
 

 

The minSdkVersion attribute declares the minimum version with which 
your app is compatible and the targetSdkVersion attribute declares the 
highest version on which you have optimized your app. Each successive 
version of Android provides compatibility for apps that were built using 
the APIs from previous platform versions, so your app should always be 
compatible with future versions of Android while using the documented 
Android APIs. 

However, if your app uses APIs added in a more recent platform version, 
but does not require them for its primary functionality, you should check 
the API level at runtime and gracefully degrade the corresponding 
features when the API level is too low.  

In this case, set the minSdkVersion to the lowest value possible for your 
app's primary functionality, then compare the current system's 
version, SDK_INT, to one the codename constants in  

Build.VERSION_CODES that corresponds to the API level you want to 
check.  

For example: 

if(Build.VERSION.SDK_INT 
<Build.VERSION_CODES.HONEYCOMB){ 
    // Running on something older than API level 
11, so disable 
    // the drag/drop features that use 
ClipboardManager APIs 
    disableDragAndDrop(); 
} 

Activity 

Activity 7.2 

Discuss different devices and different versions of the Android platform 

 

Now we will see how Android runs on devices of various sizes.  

 7.4 Screen Configuration 

Android runs on devices of various sizes, from phones to tablets and TVs. 
In order to categorize devices by their screen type, Android defines 
characteristics for each device:  

• Screen size -The physical size of the screen. Actual 
physical size, measured as the screen's diagonal. 

• For simplicity, Android groups all actual screen sizes 
into four generalized sizes: small, normal, large, and 



 

 

Unit 7 Device Compatibility 
 

 

98 
 

 
 

extra-large. 

• Screen density -. The quantity of pixels within a 
physical area of the screen; usually referred to as dpi 
(dots per inch). For example, a "low" density screen has 
fewer pixels within a given physical area, compared to a 
"normal" or "high" density screen. 

• For simplicity, Android groups all actual screen densities 
into six generalized densities: low, medium, high, extra-
high, extra-extra-high, and extra-extra-extra-high. 

• Resolution- The total number of physical pixels on a 
screen. When adding support for multiple screens, 
applications do not work directly with resolution; 
applications should be concerned only with screen size 
and density, as specified by the generalized size and 
density groups. 

A set of six generalized densities 

• ldpi (low) ~120dpi 
• mdpi (medium) ~160dpi 
• hdpi (high) ~240dpi 
• xhdpi (extra-high) ~320dpi 
• xxhdpi (extra-extra-high) ~480dpi 

 

Density-independent pixel (dp) 

A virtual pixel unit that you should use when defining UI layout, to 
express layout dimensions or position in a density-independent way. 

The density-independent pixel is equivalent to one physical pixel on a 
160 dpi screen, which is the baseline density assumed by the system for a 
"medium" density screen.  

At runtime, the system transparently handles any scaling of the dp units, 
as necessary, based on the actual density of the screen in use. The 
conversion of dp units to screen pixels is simple: px = dp * (dpi / 160).  

For example, on a 240 dpi screen, 1 dp equals 1.5 physical pixels. You 
should always use dp units when defining your application's UI, to ensure 
proper display of your UI on screens with different densities. 

By default, your app is compatible with all screen sizes and densities, 
because the system makes the appropriate adjustments to your UI layout 
and image resources as necessary for each screen. However, you should 
optimize the user experience for each screen configuration by adding 
specialized layouts for different screen sizes and optimized bitmap 
images for common screen densities. 



 

 
 Introduction to Android 

 

 
99 

 
 

 

Use wrap_content and match_parent 

To ensure that your layout is flexible and adapts to different screen sizes, 
you should use "wrap_content" and "match_parent" for the width and 
height of some view components. If you use "wrap_content", the width or 
height of the view is set to the minimum size necessary to fit the content 
within that view, while "match_parent" makes the component expand to 
match the size of its parent view. By using 
the "wrap_content" and "match_parent" size values instead of hard-coded 
sizes, your views either use only the space required for that view or 
expand to fill the available space, respectively.  

For example: 

<LinearLayoutxmlns:android="http://schemas.android.com
/apk/res/android" 
    android:orientation="vertical" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent"> 
    <LinearLayoutandroid:layout_width="match_parent" 
                  android:id="@+id/linearLayout1"   
                  android:gravity="center" 
                  android:layout_height="50dp"> 
        <ImageViewandroid:id="@+id/imageView1" 
                   android:layout_height="wrap_content
" 
                   android:layout_width="wrap_content" 
                   android:src="@drawable/logo" 
                   android:paddingRight="30dp" 
                   android:layout_gravity="left" 
                   android:layout_weight="0"/> 
        <Viewandroid:layout_height="wrap_content" 
              android:id="@+id/view1" 
              android:layout_width="wrap_content" 
              android:layout_weight="1"/> 
        <Buttonandroid:id="@+id/categorybutton" 
                android:background="@drawable/button_b
g" 
                android:layout_height="match_parent" 
                android:layout_weight="0" 
                android:layout_width="120dp" 
                style="@style/CategoryButtonStyle"/> 
    </LinearLayout> 
 
    <fragmentandroid:id="@+id/headlines" 
              android:layout_height="fill_parent" 
              android:name="com.example.android.newsre
ader.HeadlinesFragment" 
              android:layout_width="match_parent"/> 
</LinearLayout> 

Notice how the sample uses "wrap_content" and "match_parent" for 
component sizes rather than specific dimensions. This allows the layout 



 

 

Unit 7 Device Compatibility 
 

 

10
0 

 

 

 

to adapt correctly to different screen sizes and orientations. 

For example, figure 7.1 shows what this layout looks like in portrait and 
landscape mode. Notice that the sizes of the components adapt 
automatically to the width and height: 

 

Figure 7.1: News Reader sample app in portrait (left) and landscape 
(right) 
(Source:https://developer.android.com/training/multiscreen/screensizes.ht
ml) 

Video- V7: Device Compatibility 

 

Let us watch the video on device compatibility and do the activity 7.3.  

URL: https://tinyurl.com/ydcl9trg  

 

 

 

 

 

Activity 

Activity 7.3 

Calculate resolution values for your mobile device using density 
independent pixels.  

https://tinyurl.com/ydcl9trg


 

 
 Introduction to Android 

 

 10
1 

 

 

 

Unit summary 

 

Summary 

In this unit, we discussed device compatibility and application availability 
to devices based on the device characteristics. These characteristics 
include device features, Platform version and Screen configuration. 
Furthermore, Android defines characteristics for each device such as 
screen size, density and resolution.  

 

 

 

 

  

https://developer.android.com/guide/practices/compatibility.html#Features
https://developer.android.com/guide/practices/compatibility.html#Version
https://developer.android.com/guide/practices/compatibility.html#Screens


 

 

Unit 8 User Interface Design 
 

 

10
2 

 

 

 

Unit 8 

User Interface Design 

Introduction 

This unit will focus on theory of User Interface (UI) Design and at the 
end of this unit you will be able to build a user interface using Android 
layouts for different types of devices. Hence, this unit helps you to create 
an application that is smooth and responsive by using best practices for 
graphical user interface (GUI) design.  

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ design Graphical User Interface (GUI) using Extended Markup 
Language(XML) 

▪ use best practices for GUI design 

▪ apply layouts to improve application performance  

 

 

Terminology 

 

attributes: a piece of information which describes the 
properties of a field  

layout: arrangemnet or the plan 

adapter: converts one type of software to another type 

 view: object that user can interact. 

8.1 UI Overview 

All user interface elements in an Android app are built using View and 
ViewGroup objects. 

Android provides a collection of both View and ViewGroup subclasses 
that offer you common input controls (such as buttons and text fields) and 
various layout models (such as a linear or relative layout). 

• View  - is an object that draws something on the screen that 
the user can interact. UI widgets such as buttons or text 
fields.  

 

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/guide/topics/ui/controls/button.html
https://developer.android.com/guide/topics/ui/controls/text.html
https://developer.android.com/guide/topics/ui/controls/text.html


 

 
 Introduction to Android 

 

 10
3 

 

 

 

• ViewGroup - is an object that holds other View objects in 
order to define the layout of the interface. Invisible view 
containers that define how the child views are laid out, such 
as in a grid or a vertical list. 

 8.2 User Interface Layout 

The user interface for each component of your app is defined using a 
hierarchy of View and ViewGroup objects, as shown in figure 8.1.  

Each view group is an invisible container that organizes child views, 
while the child views may be input controls or other widgets that draw 
some part of the UI. This hierarchy tree can be as simple or complex as 
you need it to be (but simplicity is best for performance). 

 

Figure 8.1.ViewGroup objects form branches in the layout 
withViewobjects  

(Source:  https://developer.android.com/guide/topics/ui/overview.html) 

 

Common Layouts 

Each subclass of the ViewGroup class provides a unique way to display 
the views you nest within it. Some of the common layout types that are 
built into the Android platform are given below in figure 8.2. You can 
nest one or more layouts within another layout to achieve your UI design.  

• Linear Layout  

LinearLayout is a view group that 
aligns all its children in a single direction, 
vertically or horizontally. You can specify 
the layout direction with the 
android:orientation attribute. A layout that 
organizes its children into a single 
horizontal or vertical row. It creates a 

scrollbar if the length of the window exceeds the length of the screen. 

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/guide/topics/ui/layout/linear.html
https://developer.android.com/reference/android/widget/LinearLayout.html#attr_android:orientation


 

 

Unit 8 User Interface Design 
 

 

10
4 

 

 

 

 

• Relative Layout  

RelativeLayout is a view group that 
displays child views in relative positions. 
The position of each view can be specified 
as relative to sibling elements (such as to 
the left-of or below another view) or in 
positions relative to the parent 

RelativeLayout area (such as aligned to the bottom, left or center). 

 

• List View 

ListView is a view group that displays a 
list of scrollable items. The list items are 
automatically inserted to the list using an 
Adapter that pulls content from a source 
such as an array or database query and 
converts each item result into a view that is 
placed into the list. 

 

 

• Grid View 

 

GridView is a View Group that displays 
items in a two-dimensional, scrollable grid. 
The grid items are automatically inserted to 
the layout using a ListAdapter. 

 

 

Figure 8.2: common layouts  

(Source:https://developer.android.com/guide/topics/ui/layout/linear.html) 

 

Video – V8: Creating GUI for Android Application 

 

You may watch this screencast to see how to build a simple user interface 
while studying this unit. 

 URL: https://tinyurl.com/y9hkqpjb 

 

 

 

https://developer.android.com/guide/topics/ui/layout/relative.html
https://developer.android.com/reference/android/widget/Adapter.html
https://tinyurl.com/y9hkqpjb


 

 
 Introduction to Android 

 

 10
5 

 

 

 

Building Layouts with an Adapter 

When the content for your layout is dynamic or not pre-determined, you 
can use a layout that subclasses AdapterView to populate the layout with 
views at runtime. A subclass of the AdapterView class uses an Adapter to 
bind data to its layout. The Adapter behaves as an intermediary between 
the data source and the AdapterView layout the Adapter retrieves the data 
(from a source such as an array or a database query) and converts each 
entry into a view that can be added into the AdapterView layout. 

Common layouts backed by an adapter include: 

• List View - Displays a scrolling single column list 

• Grid View - Displays a scrolling grid of columns and rows. 

A layout defines the visual structure for a user interface, such as the UI 
for an activity or app widget. You can declare a layout in two ways: 

• Declare UI elements in XML - Android provides a 
straightforward XML vocabulary that corresponds to the 
View classes and subclasses, such as those for widgets and 
layouts. 

• Instantiate layout elements at runtime - Your application can 
create View and ViewGroup objects programmatically. 

Now we will see how to design the UI using XML. 

 8.3 Input Controls 

Input controls are the interactive components in your app's user interface. 
Android provides a wide variety of controls you can use in your UI, such 
as buttons, text fields, seek bars, checkboxes, zoom buttons, and toggle 
buttons. Adding an input control to your UI is as simple as adding an 
XML element to your XML layout.  

Example: layout with a text field and button 

<?xml version="1.0" encoding="utf-8"?> 

<LinearLayoutxmlns:android="http://schemas.android.com

/apk/res/android" 

android:layout_width="fill_parent" 
android:layout_height="fill_parent" 
android:orientation="horizontal"> 
<EditTextandroid:id="@+id/edit_message" 
android:layout_weight="1" 
android:layout_width="0dp" 
android:layout_height="wrap_content" 
android:hint="@string/edit_message"/> 
<Buttonandroid:id="@+id/button_send" 
android:layout_width="wrap_content" 
android:layout_height="wrap_content" 
android:text="@string/button_send" 

https://developer.android.com/reference/android/widget/Adapter.html
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/topics/appwidgets/index.html
https://developer.android.com/guide/topics/ui/declaring-layout.html


 

 

Unit 8 User Interface Design 
 

 

10
6 

 

 

 

android:onClick="sendMessage"/> 

</LinearLayout> 

 

Common controls: 

Table 8.1 gives a list of some common controls that you can use in your 
app.  

 

Table 8.1: common controls 

Control 
Type 

Description Related 
Classes 

Button A push-button that can be pressed, or clicked, by the user to 
perform an action. 

Button 

Text 
field 

An editable text field. You can use the 
AutoCompleteTextView widget to create a text entry widget 
that provides auto-complete suggestions 

EditText,Aut
oCompleteTe
xtView 

Checkb
ox 

An on/off switch that can be toggled by the user. You should 
use checkboxes when presenting users with a group of 
selectable options that are not mutually exclusive. 

CheckBox 

Radio 
button 

Similar to checkboxes, except that only one option can be 
selected in the group. 

RadioGroup 
RadioButton 

Toggle 
button 

An on/off button with a light indicator. ToggleButton 

Spinner A drop-down list that allows users to select one value from a 
set. 

Spinner 

8.4 Fundamentals of designing user interfaces using XML 

To declare your layout, you can instantiate View objects in code and start 
building a tree, but the easiest and most effective way to define layout is 
with an XML file. XML offers a human-readable structure for the layout, 
similar to HTML. 

Write the XML 

Using Android's XML vocabulary, you can quickly design UI layouts and 
the screen elements they contain, in the same way you create web pages 
in HTML with a series of nested elements. 

Each layout file must contain exactly one root element, which must be a 
View or ViewGroup object. Once you have defined the root element, you 
can add additional layout objects or widgets as child elements to build a 
View hierarchy that defines your layout.  

 

 

https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/widget/RadioGroup.html
https://developer.android.com/reference/android/view/View.html


 

 
 Introduction to Android 

 

 10
7 

 

 

 

 

Example: XML layout that uses a vertical LinearLayout to hold 
a TextView and a Button 
 

<?xml version="1.0" encoding="utf-8"?> 
<LinearLayoutxmlns:android="http://schemas.android.com
/apk/res/android" 
              android:layout_width="fill_parent" 
              android:layout_height="fill_parent" 
              android:orientation="vertical"> 
    <TextViewandroid:id="@+id/text" 
              android:layout_width="wrap_content" 
              android:layout_height="wrap_content" 
              android:text="I am a TextView"/> 
    <Buttonandroid:id="@+id/button" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:text="I am a Button"/> 
</LinearLayout> 

After you have declared your layout in XML, save the file with 
the .xml extension, in your Android project's res/layout/ directory, so it 
will properly compile. 

Load the XML Resource 

When you compile your application, each XML layout file is compiled 
into a View resource. You should load the layout resource from your 
application code, in your Activity.onCreate() callback implementation. 
Do so by calling setContentView(), passing it the reference to your layout 
resource in the form of: R.layout.layout_file_name.  

Example:XML layout saved as main_layout.xml 

You need to load it for your Activity. 

publicvoid onCreate(Bundle savedInstanceState){ 

    super.onCreate(savedInstanceState); 

    setContentView(R.layout.main_layout); 

} 

The onCreate() callback method in your Activity is called by the Android 
framework when your Activity is launched.  

Attributes 

Every View and ViewGroup object supports their own variety of XML 
attributes. Some attributes are specific to a View object (for example, 

https://developer.android.com/reference/android/widget/LinearLayout.html
https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/view/View.html


 

 

Unit 8 User Interface Design 
 

 

10
8 

 

 

 

TextView supports the textSize attribute), but these attributes are also 
inherited by any View objects that may extend this class. Few of these 
attributes are given below.  

• ID attribute 

Any View object may have an integer ID associated with it, to uniquely 
identify the View within the tree. When the application is compiled, this 
ID is referenced as an integer, but the ID is typically assigned in the 
layout XML file as a string, in the id attribute. This is an XML attribute 
common to all View objects (defined by the View class) and you will use 
it very often.  

The syntax for an ID, inside an XML tag is: 

android:id="@+id/my_button" 

• Layout Parameters 

XML layout attributes named layout_something define layout parameters 
for the View that are appropriate for the ViewGroup in which it resides. 
Every ViewGroup class implements a nested class that 
extends ViewGroup.LayoutParams. This subclass contains property types 
that define the size and position for each child view, as appropriate for 
the view group. 

Figure 8.3 shows the hierarchy of layouts associated with each view.  

 

Figure 8.3. Hierarchy with layout parameters associated with each view. 
(Source:https://developer.android.com/guide/topics/ui/declaring-
layout.html#CommonLayouts) 

• Layout Position 

The geometry of a view is that of a rectangle. A view has a location, 
expressed as a pair of left andtop coordinates, and two dimensions, 
expressed as a width and a height. The unit for location and dimensions is 
the pixel. It is possible to retrieve the location of a view by invoking the 
methods getLeft() and getTop(). In addition, several convenience 
methods are offered to avoid unnecessary computations, namely 
getRight() and getBottom(). 

• Size, Padding and Margins 

The size of a view is expressed with a width and a height. A view 
possesses two pairs of width and height values. The first pair is known 

https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html
https://developer.android.com/guide/topics/ui/declaring-layout.html#CommonLayouts
https://developer.android.com/guide/topics/ui/declaring-layout.html#CommonLayouts
https://developer.android.com/reference/android/view/View.html#getLeft()
https://developer.android.com/reference/android/view/View.html#getTop()
https://developer.android.com/reference/android/view/View.html#getRight()
https://developer.android.com/reference/android/view/View.html#getBottom()


 

 
 Introduction to Android 

 

 10
9 

 

 

 

as measured width and measured height. These dimensions define how 
big a view wants to be within its parent. The measured dimensions can be 
obtained by calling getMeasuredWidth() and getMeasuredHeight(). 

The next section will focus on common layout for Android application.  

Activity 

Activity 8.1 

Create a Linear Layout following the given steps 

Step 1: In Android Studio, from the res/layout directory, open 
the content_main.xml file. 

The BlankActivity template you chose when you created this project 
includes the content_my.xml file with a RelativeLayout root view and 
aTextView child view. 

Step 2: In the Preview pane, click the Hide icon  to close the 
Preview pane. 

In Android Studio, when you open a layout file, you are first shown the 
Preview pane. Clicking elements in this pane opens the WYSIWYG tools 
in the Design pane. For this lesson, you are going to work directly with 
the XML. 

Step 3: Delete the <TextView> element. 

Step 4: Change the <RelativeLayout> element to <LinearLayout>. 

Step 5: Add the android:orientation attribute and set it to "horizontal". 

Step 6: Remove the android:padding attributes and 
the tools:context attribute. 

The result looks like this: 

<LinearLayoutxmlns:android="http://schemas.android.com
/apk/res/android" 
    xmlns:app="http://schemas.android.com/apk/res-
auto" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:orientation="horizontal" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    app:layout_behavior="@string/appbar_scrolling_view
_behavior" 
    tools:showIn="@layout/activity_main"> 

As with every View object, you must define certain XML attributes to 
specify the EditText object's properties. 

https://developer.android.com/reference/android/widget/LinearLayout.html#attr_android:orientation
https://developer.android.com/reference/android/view/View.html


 

 

Unit 8 User Interface Design 
 

 

11
0 

 

 

 

Activity 

Activity 8.2 

Add a Text Field to created layout following the given steps.  

Step 1: In the content_my.xml file, within the <LinearLayout> element, 
define an <EditText> element with the id attribute set 
to @+id/edit_message. 

Step 2: Define the layout_width and layout_height attributes 
as wrap_content. 

Step 3: Define a hint attribute as a string object named edit_message.  

The <EditText> element should read as follows: 

<EditTextandroid:id="@+id/edit_message" 
    android:layout_width="wrap_content" 
    android:layout_height="wrap_content" 
    android:hint="@string/edit_message" /> 

Activity 

Activity 8.3 

Add a Button to created layout following the given steps.  

Step 1: In Android Studio, from the res/layout directory, edit 
the content_my.xml file. 

Step 2: Within the <LinearLayout> element, define 
a <Button> element immediately following the <EditText> element. 

Step 3: Set the button's width and height attributes 
to "wrap_content" so the button is only as big as necessary to fit the 
button's text label. 

Step 4: Define the button's text label with the android:text attribute; 
set its value to the button_send string resource you defined in the 
previous section. 

 

Your <LinearLayout> should look like this: 

 

 

 

 

 

https://developer.android.com/reference/android/widget/EditText.html


 

 
 Introduction to Android 

 

 11
1 

 

 

 

<LinearLayoutxmlns:android="http://schemas.android.com
/apk/res/android" 
    xmlns:app="http://schemas.android.com/apk/res-
auto" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:orientation="horizontal" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    app:layout_behavior="@string/appbar_scrolling_view
_behavior" 
    tools:showIn="@layout/activity_my"> 
        <EditTextandroid:id="@+id/edit_message" 
          android:layout_width="wrap_content" 
          android:layout_height="wrap_content" 
          android:hint="@string/edit_message"/> 
        <Button 
          android:layout_width="wrap_content" 
          android:layout_height="wrap_content" 
          android:text="@string/button_send"/> 
</LinearLayout> 

The layout is currently designed so that both 
the EditText and Button widgets are only as big as necessary to fit their 
content, as given in figure 8.3. 

 

 

Figure 8.4. The EditText and Button widgets.  

(Source: https://developer.android.com/training/basics/firstapp/building-
ui.html) 

Activity 

Activity 8.4 

What is the importance of XML-based layouts? 

Explain LinearLayout in Android. 

Now we will see how to design the same UI with the Layout Editor.  

 

8.5 Design a UI with Layout Editor 

Android Studio offers an advanced layout editor that allows you to drag 
and-drop widgets into your layout and preview your layout while editing 

https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/reference/android/widget/Button.html
https://developer.android.com/training/basics/firstapp/building-ui.html
https://developer.android.com/training/basics/firstapp/building-ui.html


 

 

Unit 8 User Interface Design 
 

 

11
2 

 

 

 

the XML. 

Within the layout editor, you can switch between the Text view, where 
you edit the XML file as text, and the Design view. Just click the 
appropriate tab at the bottom of the window to display the desired editor. 

Editing in the Text View 

While editing in the Text view, you can preview the layout on devices by 
opening the Preview pane and you can modify the preview by changing 
various options at the pane, including the preview device, layout theme, 
platform version and more. figure 8.5 gives how your application 
preview.  

 

Figure 8.5 Previewing your app  

(Source:https://developer.android.com/studio/write/layout-editor.html) 

Next, we will focus on how you can switch to graphical editor and edit 
user interfaces in a design view.   

Editing in the Design View 

You can switch to the graphical editor by clicking Design at the bottom 
of the window. While editing in the Design view, you can show and hide 
the widgets available to drag-and-drop by clicking Palette on the window. 
Clicking Designer reveals a panel with a layout hierarchy and a list of 
properties for each view in the layout. 

When you drag a widget into the graphical layout for your app, the 
display changes to help you place the widget. What you see depends on 
the type of layout.  

Example:Dragging a widget into a FrameLayout 

It displays a grid to help you place the widget, as shown in figure 8.6. 

https://developer.android.com/studio/write/layout-editor.html
https://developer.android.com/reference/android/widget/FrameLayout.html


 

 
 Introduction to Android 

 

 11
3 

 

 

 

 

Figure 8.6 Grid layout to place a widget. 

(Source: https://developer.android.com/studio/write/layout-
editor.html#design-view) 

In the next section, we will see how to manage touch events in an android 
application.  

8.6 Managing Touch Events in a ViewGroup 

Handling touch events in a ViewGroup takes special care, because it is 
common for a ViewGroup to have children that are targets for different 
touch events than the ViewGroup itself. To make sure that each view 
correctly receives the touch events intended for it, override 
the onInterceptTouchEvent() method. 

Intercept Touch Events in a ViewGroup 

The onInterceptTouchEvent() method is called whenever a touch event is 
detected on the surface of a ViewGroup, including on the surface of its 
children. If onInterceptTouchEvent() returns true, the MotionEvent is 
intercepted, meaning it will be not be passed on to the child, but rather to 
theonTouchEvent() method of the parent. 

The onInterceptTouchEvent() method gives a parent the chance to see 
any touch event before its children do. 

In the following snippet, the class MyViewGroup extends ViewGroup. 
MyViewGroup contains multiple child views. If you drag your finger 
across a child view horizontally, the child view should no longer get 
touch events, and MyViewGroup should handle touch events by scrolling 
its contents.  

However, if you press buttons in the child view, or scroll the child view 

https://developer.android.com/studio/write/layout-editor.html#design-view
https://developer.android.com/studio/write/layout-editor.html#design-view
https://developer.android.com/reference/android/view/ViewGroup.html#onInterceptTouchEvent(android.view.MotionEvent)
https://developer.android.com/reference/android/view/ViewGroup.html


 

 

Unit 8 User Interface Design 
 

 

11
4 

 

 

 

vertically, the parent shouldn't intercept those touch events, because the 
child is the intended target. In those 
cases, onInterceptTouchEvent() should return false, 
and MyViewGroup'sonTouchEvent() won't be called. 

publicclassMyViewGroupextendsViewGroup{ 
 
    privateint mTouchSlop; 
    ... 
    ViewConfiguration vc    
=ViewConfiguration.get(view.getContext()); 
    mTouchSlop = vc.getScaledTouchSlop(); 
 
    ... 
 
    @Override 
    publicboolean onInterceptTouchEvent(MotionEvent 
ev){ 
    

/* This method JUST determines whether we want to intercept the 
motion. 
* If we return true, onTouchEvent will be called and we do the 
actual scrolling there.       */ 
 
        finalint action = 
MotionEventCompat.getActionMasked(ev); 
 
// Always handle the case of the touch gesture being //complete. 
        if(action ==MotionEvent.ACTION_CANCEL || 
action ==MotionEvent.ACTION_UP){ 
            // Release the scroll. 
            mIsScrolling =false; 
            returnfalse; 

// Do not intercept touch event, let the child handle it 
        } 
        switch(action){ 
            caseMotionEvent.ACTION_MOVE:{ 
                if(mIsScrolling){ 
// We're currently scrolling, so yes, intercept the 
                    // touch event! 
                    returntrue; 
                } 

// If the user has dragged her finger horizontally more  
// than the touch slop, start the scroll 
// left as an exercise for the reader 

 

 
                finalint xDiff = 
calculateDistanceX(ev); 
 
// Touch slop should be calculated using ViewConfiguration 
                // constants. 
                if(xDiff > mTouchSlop){ 
                    // Start scrolling! 
                    mIsScrolling =true; 

https://developer.android.com/reference/android/view/ViewGroup.html#onInterceptTouchEvent(android.view.MotionEvent)
https://developer.android.com/reference/android/view/View.html#onTouchEvent(android.view.MotionEvent)


 

 
 Introduction to Android 

 

 11
5 

 

 

 

                    returntrue; 
                } 
                break;} 
            ...} 
// In general, we don't want to intercept touch events.  
//They should be handled by the child view. 

 
        return false; 
} 
   @Override 
    publicboolean onTouchEvent(MotionEvent ev){ 

// Here we actually handle the touch event (e.g. if the  
// action is ACTION_MOVE, scroll this container). 
// This method will only be called if the touch event was // 
intercepted in onInterceptTouchEvent 
        ...}} 

In this section, we discussed managing touch Events in a ViewGroup. 
Next we will see what are the best practices of UI.  

8.7 Best Practices for User Interface 

Android provides a flexible framework for UI design that allows your app 
to display different layouts for different devices, create custom UI 
widgets, and even control aspects of the system UI outside your app's 
window. 

• Designing for Multiple Screens - A user interface that's 
flexible enough to fit perfectly on any screen and create 
different interaction patterns that are optimized for different 
screen sizes. 

• Adding the App Bar - Use the support library's toolbar 
widget to implement an app bar that displays properly on a 
wide range of devices. 

• Showing Pop-Up Messages - Use the support library's 
Snackbar widget to display a brief pop-up message. 

• Creating Custom View - Build custom UI widgets that are 
interactive and smooth. 

• Creating Backward-Compatible UIs - Use UI components 
and other APIs from the more recent versions of Android 
while remaining compatible with older versions of the 
platform. 

• Implementing Accessibility - Make apps accessible to users 
with vision impairment or other physical disabilities. 

• Managing the System UI - Hide and show status and 
navigation bars across different versions of Android, while 
managing the display of other screen components. 



 

 

Unit 8 User Interface Design 
 

 

11
6 

 

 

 

• Creating Apps with Material Design - Implement material 
design on Android. 

Unit summary 

 

 

 

In this unit, we discussed the fundamentals of user interface design. In 
addition, we discussed how to build a user interface using Android 
layouts and the best practices for user interface design. Android provides 
a flexible framework for UI design. So in this unit we discussed how to 
display an application in different layouts for different devices and how 
to create custom UI widgets.  

 

 

  



 

 
 Introduction to Android 

 

 11
7 

 

 

 

Unit 9 

Testing and Debugging 

Introduction 

This unit emphasizes the importance of the application testing and 
debugging. It provides you an opportunity to identify errors and faults in 
a developed application. It also introduces how to use testing tools and 
techniques to test Android Application and how to apply measures to 
rectify identified errors and faults. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ differentiate testing and debugging an application 

▪ set up the testing environment to develop Android applications 

▪ write unit tests to test your Android programme 

▪ perform debugging referring to log messages in Logcat 

 

 

Terminology 

 

error: mistake in the program 

fault: usually a hardware problem happening at run 
time 

emulator: hardware or software that enables one computer 
system to behave like another  

 9.1 What is Testing? 

Testing is one of the phases in software development life cycle that 
requires substantial amount of time before releasing software to users. To 
find the software bugs we use the process of executing a program or 
application. We have to test the software with test data to verify that a 
given set of input to a given function produces the expected result. There 
are two testing approaches; static and dynamic testing. An introduction to 
static and dynamic testing is given in the next section 

 Static and Dynamic testing 

Static testing is done basically to test the requirement specifications, test 



 

 

Unit 9 User Interface Design 
 

 

11
8 

 

 

 

plan, user manual etc. They are not executed, but tested with the set of 
some tools and processes. Reviews, walkthroughs and inspections are 
some example processes. These processes are not discussed in this 
material. 

Dynamic Testing is when execution is done on the software code as a 
technique to detect defects and to determine quality attributes of the code.  

With dynamic testing methods software is executed using a set of inputs 
and its output and then compared with the expected results. There are 
various levels of dynamic testing techniques. Some of them are unit 
testing, integration testing, system testing and acceptance testing. Here 
we will be only focusing on how different dynamic testing techniques can 
be used in an Android application. 

Now you know that techniques can be used in testing software. Let’s 

learn how to test an Android application using above techniques. 

 9.2 How to test Android application? 

Testing an application on multiple physical devices at one place is not 
practical. Testing an application to run on different devices is referred to 
as device compatibility which is discussed in detail in a different unit. In 
order to avoid this practical barrier, Android SDK provides an emulator 
to test your application against all versions of Android on different 
devices. An emulator provides a virtual environment to test your 
application. It eliminates the requirement of a real physical device. This 
emulator uses an Android Virtual Device (AVD) to run an application. In 
order to do that it is required to create an AVD. Creating an AVD was 
discussed under an earlier section. 

In addition, Amazon and various other companies maintain device farms 
to test applications with automation as well as manual testing. 

An Android application should be tested for its functionality, user 
interfaces, performance etc. based on the generated test cases. It is 
application developers’ responsibility to perform the unit tests and a 
separate testing team will be responsible of performing certain other 
types of testing such as functional testing, integration testing, acceptance 
testing etc. 

9.3 Unit Testing 

Unit tests are the fundamental tests in your app testing strategy. By 
creating and running unit tests against your code, you can easily verify 
that the logic of individual units is correct. Running unit tests after every 
build helps you to quickly catch and fix software regressions introduced 
by code changes to your app. 

A unit test generally exercises the functionality of the smallest possible 
unit of code (which could be a method, class, or component) in a 
repeatable way. You should build unit tests when you need to verify the 
logic of specific code in your app. For example, if you are unit testing a 
class, your test might check that the class is in the right state. Typically, 



 

 
 Introduction to Android 

 

 11
9 

 

 

 

the unit of code is tested in. After completing this section, you will be 
able to perform unit testing for your application. 

Android unit tests are based on JUnit and to test Android apps, you 
typically create these types of automated unit tests: 

• Local tests: Unit tests that run on your local machine only. These tests 

are compiled to run locally on the Java Virtual Machine (JVM) to 

minimize execution time. Use this approach to run unit tests that have 

no dependencies on the Android framework or have dependencies that 

can be filled by using mock objects. 

• Instrumented tests: Unit tests that run on an Android device or 

emulator. These tests have access to instrumentation information, such 

as theContext for the app under test. Use this approach to run unit 

tests that have Android dependencies which cannot be easily filled by 

using mock objects. 

You should write your unit or integration test class as a JUnit 4test class 
in JUnit framework. This framework offers a convenient way to perform 
common setup, teardown, and assertion operations in your test. 

Activity 

Activity 9.1 
 
Differentiate the use of  local test from instrumented test when 
performing a unit test of an Android application. 

 

 

9.4 How to set up your Testing Environment? 

In your Android Studio project, you must store the source files for 
instrumented tests at module-name/src/androidTests/java/. This directory 
already exists when you create a new project. 

Before you begin, you should download the Android Testing Support 
Library Setup, which provides APIs that allow you to quickly build and 
run instrumented test code for your apps. The Testing Support Library 
includes a JUnit 4 test runner (AndroidJUnitRunner) and APIs for 
functional UI tests (Espressoand UI Automator). 

You also need to configure the Android testing dependencies for your 

https://developer.android.com/reference/android/content/Context.html


 

 

Unit 9 User Interface Design 
 

 

12
0 

 

 

 

project to use the test runner and the rules APIs provided by the Testing 
Support Library. To simplify your test development, you should also 
include the Hamcrest library, which lets you create more flexible 
assertions using the Hamcrest matcher APIs. 

In your app's top-level build.gradle file, you need to specify these 
libraries as dependencies: 

 

dependencies { 
    androidTestCompile 'com.android.support:support-
annotations:24.0.0' 
    androidTestCompile 
'com.android.support.test:runner:0.5' 
    androidTestCompile 
'com.android.support.test:rules:0.5' 
    // Optional -- Hamcrest library 
    androidTestCompile 'org.hamcrest:hamcrest-
library:1.3' 
    // Optional -- UI testing with Espresso 
    androidTestCompile 
'com.android.support.test.espresso:espresso-
core:2.2.2' 
    // Optional -- UI testing with UI Automator 
    androidTestCompile 
'com.android.support.test.uiautomator:uiautomator-
v18:2.1.2' 
} 

To use JUnit 4 test classes, make sure to specify AndroidJUnitRunner as 
the default test instrumentation runner in your project by including the 
following setting in your app's module-level build.gradle file: 

android { 
    defaultConfig { 
        testInstrumentationRunner 
"android.support.test.runner.AndroidJUnitRunner" 
    } 
} 

A basic JUnit 4 test class is a Java class that contains one or more test 
methods. A test method begins with the @Test annotation and contains 
the code to exercise and verify a single functionality (that is, a logical 
unit) in the component that you want to test. 

The code snippet below shows an example JUnit 4 integration test that 
uses the Espresso APIs to perform a click action on a UI element, and 
check whether an expected string is displayed. 

 

 

 

 



 

 
 Introduction to Android 

 

 12
1 

 

 

 

@RunWith(AndroidJUnit4.class) 
@LargeTest 
publicclassMainActivityInstrumentationTest{ 
 
    @Rule 
    publicActivityTestRule mActivityRule 
=newActivityTestRule<>(MainActivity.class); 
 
    @Test 
    publicvoid sayHello(){ 
       onView(withText("Sayhello!")).perform(click()); 
 
       onView(withId(R.id.textView)).check(matches(wit
hText("Hello, World!"))); 
    } 
} 

In your JUnit 4 test class, you can call out sections in your test code for 
special processing by using the following annotations: 

@Before: Use this annotation to specify a block of code that contains test 
setup operations. The test class invokes this code block before each test. 
You can have multiple @Before methods but the order in which the test 
class calls these methods is not guaranteed. 

@After: This annotation specifies a block of code that contains test tear-
down operations. The test class calls this code block after every test 
method. You can define multiple @After operations in your test code. 
Use this annotation to release any resources from memory. 

@Test: Use this annotation to mark a test method. A single test class can 
contain multiple test methods, each prefixed with this annotation. 

@Rule: Rules allow you to flexibly add or redefine the behavior of each 
test method in a reusable way. In Android testing, use this annotation 
together with one of the test rule classes that the Android Testing Support 
Library provides, such as ActivityTestRule or ServiceTestRule. 

@BeforeClass: Use this annotation to specify static methods for each test 
class to invoke only once. This testing step is useful for expensive 
operations such as connecting to a database. 

@AfterClass: Use this annotation to specify static methods for the test 
class to invoke only after all tests in the class have run. This testing step 
is useful for releasing any resources allocated in the @BeforeClass block. 

@Test(timeout=): Some annotations support the ability to pass in 
elements for which you can set values. For example, you can specify a 
timeout period for the test. If the test starts but does not complete within 
the given timeout period, it automatically fails. You must specify the 
timeout period in milliseconds, for example: @Test(timeout=5000). 

Instrumented unit tests 



 

 

Unit 9 User Interface Design 
 

 

12
2 

 

 

 

Unit tests that run on an Android device or emulator can take advantage 
of the Android framework APIs and supporting APIs, such as the 
Android Testing Support Library. You should create instrumented unit 
tests if your tests need access to instrumentation information (such as the 
target app's Context) or if they require the real implementation of an 
Android framework component (such as a Parcelable or 
SharedPreferences object). These tests have access to Instrumentation 
information, such as the Context of the app you are testing. Use these 
tests when your tests have Android dependencies that mock objects 
cannot satisfy. 

Because instrumented tests are built into a stand-alone APK, they must 
have an AndroidManifest.xml file. However, Gradle automatically 
generates this file during the build so it is not visible in your project 
source set. You can add your own manifest file if necessary, such as to 
specify a different value for `minSdkVersion` or register run listeners just 
for your tests. When building your app, Gradle merges multiple manifest 
files into one manifest.  

Create an Instrumented Unit Test Class 

Your instrumented unit test class should be written as a JUnit 4 test class. 
To learn more about creating JUnit 4 test classes and using JUnit 4 
assertions and annotations, see Create a Local Unit Test Class. 

To create an instrumented JUnit 4 test class, add 
the @RunWith(AndroidJUnit4.class) annotation at the beginning of your 
test class definition. You also need to specify 
the AndroidJUnitRunner class provided in the Android Testing Support 
Library as your default test runner. This step is described in more detail 
in Getting Started with Testing. 

The following example shows how you might write an instrumented unit 
test to test that the Parcelable interface is implemented correctly for the 
LogHistory class: 

 

 

import android.os.Parcel; 
import android.support.test.runner.AndroidJUnit4; 
import android.util.Pair; 
import org.junit.Test; 
import org.junit.runner.RunWith; 
import java.util.List; 
importstatic org.hamcrest.Matchers.is; 
importstatic org.junit.Assert.assertThat; 
 
@RunWith(AndroidJUnit4.class) 
@SmallTest 
publicclassLogHistoryAndroidUnitTest{ 
 
    publicstaticfinalString TEST_STRING ="This is a 
string"; 
    publicstaticfinallong TEST_LONG =12345678L; 



 

 
 Introduction to Android 

 

 12
3 

 

 

 

    privateLogHistory mLogHistory; 
 
    @Before 
    publicvoid createLogHistory(){ 
        mLogHistory =newLogHistory(); 
    } 
 
    @Test 
    publicvoid logHistory_ParcelableWriteRead(){ 
        // Set up the Parcelable object to send and 
receive. 
        mLogHistory.addEntry(TEST_STRING, TEST_LONG); 
 
        // Write the data. 
        Parcel parcel =Parcel.obtain(); 
        mLogHistory.writeToParcel(parcel, 
mLogHistory.describeContents()); 
 
        // After you're done with writing, you need to 
reset the parcel for reading. 
        parcel.setDataPosition(0); 
 
        // Read the data. 
        LogHistory createdFromParcel 
=LogHistory.CREATOR.createFromParcel(parcel); 
        List<Pair<String,Long>> createdFromParcelData 
= createdFromParcel.getData(); 
 
        // Verify that the received data is correct. 
        assertThat(createdFromParcelData.size(),is(1))
; 
        assertThat(createdFromParcelData.get(0).first,
is(TEST_STRING)); 
        assertThat(createdFromParcelData.get(0).second
,is(TEST_LONG)); 
    } 
} 

Create a test suite 

To organize the execution of your instrumented unit tests, you can group 
a collection of test classes in a test suite class and run these tests together. 
Test suites can be nested. That is your test suite can group other test 
suites and run all their component test classes together. 

A test suite is contained in a test package, similar to the main application 
package. By convention, the test suite package name usually ends with 
the suite suffix (e.g. com. example.android.testing.mysample.suite ). 

To create a test suite for your unit tests, import the JUnit RunWith and 
Suite classes. In your test suite, add the @RunWith(Suite.class) and the 
@Suite.SuitClasses() annotations. In the @Suite.SuiteClasses() 



 

 

Unit 9 User Interface Design 
 

 

12
4 

 

 

 

annotation, list the individual test classes or test suites as arguments. 

The following example shows how you might implement a test suite 
called UnitTestSuite that groups and runs the CalculatorInstrumentation- 
Test and CalculatorAddParameterizedTest test classes together. 

import 
com.example.android.testing.mysample.CalculatorAddPara
meterizedTest; 
import 
com.example.android.testing.mysample.CalculatorInstrum
entationTest; 
import org.junit.runner.RunWith; 
import org.junit.runners.Suite; 
 
// Runs all unit tests. 
@RunWith(Suite.class) 
@Suite.SuiteClasses({CalculatorInstrumentationTest.cla
ss, 
        CalculatorAddParameterizedTest.class}) 
publicclassUnitTestSuite{} 

Run Instrumented Unit Tests 

To run your instrumented tests, follow these steps: 

1. Be sure your project is synchronized with Gradle by clicking Sync 
Project  in the toolbar. 

2. Run your test in one of the following ways: 

o To run a single test, open the Project window, and then right-click 

a test and click Run . 

o To test all methods in a class, right-click a class or method in the 

test file and click Run . 

o To run all tests in a directory, right-click on the directory and 

select Run tests . 

The Android Plugin for Gradle compiles the instrumented test code 
located in the default directory (src/androidTest/java/), builds a test APK 
and production APK, installs both APKs on the connected device or 
emulator, and runs the tests. Android Studio then displays the results of 
the instrumented test execution in the Run window. 

Note: While running or debugging instrumented tests, Android Studio 
does not inject the additional methods required for Instant Run and turns 
the feature off. 

By default, Android Studio sets up new projects to deploy to the 
Emulator or a physical device with just a few clicks. With Instant Run, 
you can push changes to methods and existing app resources to a running 



 

 
 Introduction to Android 

 

 12
5 

 

 

 

app without building a new APK, so code changes are visible almost 
instantly. 

Instant Run 

Introduced in Android Studio 2.0, Instant Run is a behavior for 

the Run and 

 Debug  commands that significantly reduces the time between 
updates to your app. Although your first build may take longer to 
complete, Instant Run pushes subsequent updates to your app without 
building a new APK, so changes are visible much more quickly. 

Instant Run is supported only when you deploy the debug build variant, 
use Android Plugin for Gradle version 2.0.0 or higher, and 
set minSdkVersion to 15 or higher in your app's module-
level build.gradle file. For the best performance, set minSdkVersion to 21 
or higher. 

After deploying an app, a small, yellow thunderbolt icon appears within 

theRun  button (or Debug  button), indicating that Instant Run is 
ready to push updates the next time you click the button. Instead of 
building a new APK, it pushes just those new changes and, in some cases, 
the app doesn't even need to restart but immediately shows the effect of 
those code changes. 

Instant Run pushes updated code and resources to your connected device 
or emulator by performing a hot swap, warm swap, or cold swap. It 
automatically determines the type of swap to perform based on the type 
of change you made.  

 

Video – V9: Android Unit Testing 

 
In this video you will be shown how to setup testing environment and 
how to write a unit test. You may watch this video and do activity 9.2.  

URL: https://tinyurl.com/yaatacny 

 

 
 
 
 
 
 
 

https://tinyurl.com/yaatacny


 

 

Unit 9 User Interface Design 
 

 

12
6 

 

 

 

Activity 

Activity 9.2 
  
Create an Android application “MyApp” with a class 

“ConversionUtil”  to perform the given two functionalities.  
• To convert centimeters into inches    [write a method 

ConvertCmtoInch()] 
• To convert inches into centimeters    [write a method 

ConvertInchtoCm()] 
  
Then write local unit tests to check whether the written functionalities 
provide the expected output. Use the values given as inputs and expected 
output to test the method. 
  

Functionality to test Input  Output 

Convert centimeters into inches 10 centimeters  3.93701 inches 

Convert inches into centimeters 10 inches 25.4 centimeters 

 

9.5 What is Debugging? 

It is the procedure of finding defects in a source code and removing them. 
Android Studio includes a debugger that allows you to debug apps 
running on the Android Emulator or a connected Android device. With 
the Android Studio debugger, you can: 

● Select a device to debug your app on. 

● Set breakpoints in your code. 

● Examine variables and evaluate expressions at runtime. 

● Capture screenshots and videos of your app. 

To start debugging, click Debug  in the toolbar. Android Studio 
builds an APK, signs it with a debug key, installs it on your selected 
device, then runs it and opens the Debug window. 

If no devices appear in the Select Deployment Target window after you 
click Debug, then you need to either connect a device or click Create 
New Emulator to setup the Android Emulator. 



 

 
 Introduction to Android 

 

 12
7 

 

 

 

Activity 

Activity 9.3 

How to enable USB debugging in your device? 

 

 

9.6 What is Logcat? 

Logcat is a command-line tool that dumps a log of system messages, 
including stack traces when the device throws an error and messages that 
you have written from your app with the Log class. 

This page is about the command-line logcat tool, but you can also view 
log messages from the Logcat window in Android Studio. For 
information about viewing and filtering logs from Android Studio 

You can run logcat as an adb command or directly in a shell prompt of 
your emulator or connected device. To view log output using adb, 
navigate to your SDK platform-tools/ directory and execute: 

$ adb logcat 

You can create a shell connection to a device and execute: 

$ adb shell 
# logcat 

How to write Log Messages? 

The Log class allows you to create log messages that appear in the logcat 
window. Generally, you should use the following log methods, listed in 
order from the highest to lowest priority (or, least to most verbose): 

● Log.e (error) 

● Log.w(warning) 

● Log.i(information) 

● Log.d (debug) 

● Log.v  (verbose) 

You should never compile versbose logs into your app, except during 
development. Debug logs are compiled in but stripped at runtime, while 
error, warning and info logs are always kept. 

For each log method, the first parameter should be a unique tag and the 



 

 

 User Interface Design 
 

 

12
8 

 

 

 

second parameter is the message. The tag of a system log message is a 
short string indicating the system component from which the message 
originates (for example, ActivityManager ). Your tag can be any string 
that you find helpful, such as the name of the current class. 

A good convention is to declare a TAG constant in your class to use in 
the first parameter. For example, you might create an information log 
message as follows: 

 

 

 

private static final String TAG = "MyActivity"; 

... 

Log.i(TAG, "MyClass.getView() — get item number " + 
position); 

 

Note: Tag names greater than 23 characters are truncated in the logcat 
output. 

Unit summary 

 

Android Studio is designed to make testing simple.  This unit explained 
how to set up a JUnit test that runs on the local JVM or an instrumented 
test that runs on a device. 

 

 

 

  

https://developer.android.com/reference/android/app/ActivityManager.html
https://developer.android.com/reference/android/app/ActivityManager.html


 

 
 Introduction to Android 

 

 12
9 

 

 

 

Unit 10 

Integrating Multimedia 

Introduction 

This unit offers you with knowledge on how to integrate multimedia to 
Android applications. Further the unit discusses how to utilize 
multimedia to enhance the performance by selecting appropriate media 
formats for audio, video and images. You need to watch the provided 
video to get an insight of how different multimedia are being used in 
selected applications. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ write a code to play audio and video depending on the functional 
requirements. 

▪ implement camera functions to capture photos. 

▪ select appropriate media codecs to maximize the compatibility and 
application performance. 

 

 

Terminology 

 

multimedia: use of graphics, animations, video clippings, 
audio etc taken together 

state diagram: diagram depicting various states of an app 

codecs: a device or program that compresses data to 
enable faster transmission and decompresses 
received data 

compatibility: state of being two or more things are able to exist 
or work together in combination 

streaming media: Streaming media is multimedia that is constantly 
received by and presented to an end-user while 
being delivered by a provider 



 

 

Unit 10 Integrating Multimedia 
 

 

13
0 

 

 

 

 

10.1 Introduction to Multimedia 

Multimedia is an effective tool of communication. Let us spend some 
time to think in which forms we access the information. The simplest and 
the most common of these is the printed text. Examples include 
newspapers, web pages etc. In order to deliver information in a more 
attractive way, text materials are supported with graphics, still pictures, 
animations, video clippings, audio commentaries and so on. Use of 
different attractive formats to convey information in a meaningful manner 
is termed as multimedia.  Television is a very good example of a 
multimedia broadcasting system. Information is distributed to the 
community using audio and video signals. 

Android applications are developed to distribute different information to 
the community. Unlike in a broadcasting media, such as the television, in 
Android mobile applications the users directly interact with it. 
Multimedia is necessary to improve the user interactions in a mobile 
application. Integration of different media formats can significantly 
improve the user experience when interacting with the mobile 
application.  

 10.2 Audio and Video Integration into Android Application 

Development 

MediaPlayer and AudioManager are two classes available to play sound 
and video in the Android framework. MediaPlayer class is the primary 
API for playing sound and audio while AudioManager class is used to 
manage audio sources and audio output on a device.  MediaCodec and 
MediaExtractor classes are provided for building custom media players. 
The open source project, ExoPlayer, is a solution between these two 
options, providing a pre-built player that you can extend. 

 

Video-V10: Multimedia for Android Interactive Application Development 

By watching this video you will get an understanding how to incorporate 
multimedia to an Android application. 

URL: https://tinyurl.com/y7bj7mys 

 

 

 

 

 

 

 

https://tinyurl.com/y7bj7mys


 

 
 Introduction to Android 

 

 13
1 

 

 

 

Media Player 

An object of this class can fetch, decode, and play both audio and video 
with minimal setup. It supports several different media sources including 
local resources, Internet URIs, external URIs. Here is an example of how 
to play audio that's available as a local raw resource saved in your 
application's res/raw/ directory: 

 

Here is an example on how you might play from a URI available locally 
in the system (that you obtained through a Content Resolver, for 
instance):  

 

Playing from a remote URL via HTTP streaming looks like this: 

 

Before using the MediaPlayer, it is necessary to make the appropriate 
declarations. Example is to request permissions to access Internet for 
streaming applications. MediaPlayer will not work as expected in certain 
scenarios. Why does this happen? The possible reasons can be explained 
by understanding the state based representation of the MediaPlayer class. 
MediaPlayer has specific “states” (Figure10.1) in which certain 
operations are only valid. If you perform an operation while in the wrong 
state, the system may throw an exception or cause other undesirable 



 

 

Unit 10 Integrating Multimedia 
 

 

13
2 

 

 

 

behaviors. Schematic of the state based representation is shown below. 

The state based representation of the MediaPlayer is shown in 
Figure10.1. The state diagram clarifies which methods move the 
MediaPlayer from one state to another. For example, when you create a 
new MediaPlayer, it is in the Idle state. Then, you should initialize it by 
calling setDataSource(), bringing it to the Initialized state. Next, you have 
to prepare it using either the prepare() or prepareAsync() method. When 
the MediaPlayer is done preparing, it will then enter the Prepared state, 
which indicates that start() can be called to make it play the media. Then, 
you can move between the Started, Paused and PlaybackCompleted 
states by calling such methods as start(), pause() and seekTo(), amongst 
others. Once you call stop(), MediaPlayer cannot call start() again until 
you prepare it again.  

MediaPlayer consumes valuable system resources. Therefore, you should 
always take extra precautions to make sure you are not hanging on to a 
MediaPlayer instance longer than necessary. When you are done with it, 
you should always call release() to make sure any system resources 
allocated to it are properly released. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 Introduction to Android 

 

 13
3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure10.1: State Diagram of MediaPlayer.   
(Source: https://developer.android.com/index.html) 

Activity 

Activity 10.1 

List five valid or invalid state transitions from the MediaPlayer by 
studying the state diagram shown in Figure10.1.  

https://developer.android.com/index.html


 

 

Unit 10 Integrating Multimedia 
 

 

13
4 

 

 

 

 

Volume and Playback Control 

Depending on the user preference the loudness of the audio output should 
be manageable. Volume control should be available for the user by using 
the hardware or software volume controls of their device, bluetooth 
headset, or headphones. Apart from volume control, the user should also 
be able to have control on the playback videos. The control functions 
such as, the play, stop, pause, skip, and previous media playback keys 
should perform their respective actions on the audio stream used by the 
application you develop. 

Audio streams - In order to control the audio output, the Android 
applications use different “streams”. An audio stream enables an 
application to independently and distinctly apply controls depending on 
the user preferences. The first step to creating a predictable audio 
experience is understanding which audio stream your app will use. For 
example, Android maintains a separate audio stream called 
STREAM_MUSIC for playing music, alarms, notifications, the incoming 
call ringer, system sounds, in-call volume, and DTMF tones. Most of the 
Android audio streams are restricted to system events.  

Hardware Volume and Playback Controls 

The hardware volume control button, generally adjust the ringer volume 
of the mobile phone. For example, you do not want the ringer volume to 
be adjusted by pressing hardware volume control key while playing a 
game, but the user only wants to increase the volume of the sounds 
played by the game. For this type of preferences, it is necessary to 
identify which audio stream to control. Android provides the 
setVolumeControlStream() method to direct volume key presses to the 
audio stream that is specified. Having identified the audio stream used in 
the application, this should be set as the volume stream target. This 
setting should be coded early in your application’s lifecycle as it is only 

needed to be called once, typically within the onCreate() method (of the 
Activity or Fragment that controls your media). This ensures that 
whenever your app is visible, the volume controls function as the user 
expects. The code snippet looks like this:  

 

Once this is coded, when the user press the hardware volume keys on the 
device, the control affect the audio stream you specify whenever the 
target activity or fragment is visible. 

 

On certain mobile devices, the hardware playback control buttons are 
available or even externally connected through wireless handsets. When 
the user presses one of these buttons, the Android application notifies it 
as a ACTION_MEDIA_BUTTON action. In order to respond to these 

https://developer.android.com/reference/android/app/Activity.html?hl=mk#setVolumeControlStream%28int%29
https://developer.android.com/reference/android/app/Activity.html?hl=mk#setVolumeControlStream%28int%29
https://developer.android.com/reference/android/app/Activity.html?hl=mk
https://developer.android.com/reference/android/app/Activity.html?hl=mk
https://developer.android.com/reference/android/app/Fragment.html?hl=mk


 

 
 Introduction to Android 

 

 13
5 

 

 

 

actions, as the receiving end, a BroadcastReceiver should be registered 
(or declared). The code snippet would look like this: 

 

Once the receiver is defined, the appropriate response can only be 
generated if the receiver knows which playback button was pressed. To 
identify the button, Intent is used. Then, in order to provide the 
appropriate response action, KeyEvent class is used. An example is 
shown below. 

 

Managing Audio Focus (*italics smaller font CHECK HEADINGS) 

To avoid every music app playing at the same time, Android uses audio 
focus to allow only apps that hold the audio focus to play audio.  Before 
your app starts playing any audio, it should hold the audio focus for the 
stream it will be using. This is done with a call to requestAudioFocus().  
AUDIOFOCUS_REQUEST_GRA NTED is returned if the request is 
successful. 

You must specify which stream you are using and whether you expect to 
require transient or permanent audio focus. Request transient focus when 
you expect to play audio for only a short time (for example when playing 
navigation instructions). Request permanent audio focus when you plan 
to play audio for the foreseeable future (for example, when playing 
music). 

The following snippet requests permanent audio focus on the music audio 
stream. You should request the audio focus immediately before you begin 
playback, such as when the user presses play or the background music for 
the next game level begins. 

https://developer.android.com/reference/android/media/AudioManager.html#requestAudioFocus%28android.media.AudioManager.OnAudioFocusChangeListener,%20int,%20int%29
https://developer.android.com/reference/android/media/AudioManager.html#AUDIOFOCUS_REQUEST_GRANTED
https://developer.android.com/reference/android/media/AudioManager.html#AUDIOFOCUS_REQUEST_GRANTED


 

 

Unit 10 Integrating Multimedia 
 

 

13
6 

 

 

 

 

Once you have finished playback call abandonAudioFocus(). To notify 
the system that it is no longer require focus and unregisters the 
associated.OnAudioFocusChangeListener. In the case of abandoning 
transient focus, this allows any interrupted app to continue playback. 

 

Ducking is the process of lowering your audio stream output volume to 
make transient audio from another app easier to hear without totally 
disrupting the audio from your own application. In the following code 
snippet lowers the volume on our media player object when we 
temporarily lose focus, then returns it to its previous level when we 
regain focus. 

https://developer.android.com/reference/android/media/AudioManager.html#abandonAudioFocus%28android.media.AudioManager.OnAudioFocusChangeListener%29
https://developer.android.com/reference/android/media/AudioManager.OnAudioFocusChangeListener.html
https://developer.android.com/reference/android/media/AudioManager.OnAudioFocusChangeListener.html


 

 
 Introduction to Android 

 

 13
7 

 

 

 

 

A loss of audio focus is the most important broadcast to react to. A 
temporary loss of audio focus should result in your app silencing its audio 
stream, but otherwise maintaining the same state. You should continue to 
monitor changes in audio focus and be prepared to resume playback 
where it was paused once you have regained the focus. If the audio focus 
loss is permanent, it is assumed that another application is now being 
used to listen to audio and your app should effectively end itself. In 
practical terms, that means stopping playback, removing media button 
listeners—allowing the new audio player to exclusively handle those 
events—and abandoning your audio focus. At that point, you would 
expect a user action (pressing play in your app) to be required before you 
resume playing audio. 

When the playback functions need to be implemented, it is important for 
the application developers to know the existing protocols supported in the 
Android framework. The following are the network protocols are 
supported for audio and video playback in Android framework: 

● RTSP (RTP, SDP) 
● HTTP/HTTPS progressive streaming 
● HTTP/HTTPS live streaming draft 

protocol: 
○ MPEG-2 TS media files only 
○ Protocol version 3 (Android 4.0 

and above) 
○ Protocol version 2 (Android 3.x) 
○ Not supported before Android 3.0 

Activity 

Activity 10.2 

Identify the audio and video multimedia functions used in one of the 
following Android apps: XfinityTV, Google Music, Ustream, Netflix. 

http://tools.ietf.org/html/draft-pantos-http-live-streaming
http://tools.ietf.org/html/draft-pantos-http-live-streaming


 

 

Unit 10 Integrating Multimedia 
 

 

13
8 

 

 

 

Consider the technical aspects we have covered in earlier sections.   

Next, we will discuss the camera function usage in Android application 
development. 

 10.3 Camera functions in Android Application Development 

The Android framework includes support for various cameras and camera 
features available on mobile devices to capture pictures and videos in 
your applications.  

Android class Android.hardware.camera2 API primarily supports 
capturing images and videos. In addition, Camera, Intent, SurfaceView, 
MediaRecorder, classes are available. When developing an Android 
application it is important to declare the necessary permissions and 
features. A major advantage in declaring the features is to make sure that 
Google Play will only allow to install a specific application only on the 
mobile devices with those features of the camera. In addition to storage 
permission, depending on whether it is an external or internal memory 
should be specified during the application development. Also, if the 
application has a location tagging feature, in order to support this 
appropriate permissions to get the location information should be 
declared with associated permissions. 

In an application, whether a camera is available on the device can be 
verified at runtime. Then, the camera is accessed through an instance of 
it. An example code is shown below. 

 

Next, the camera features are loaded. Once the camera is ready to capture 
the picture or the video SurfaceView is used to obtain preview of the live 



 

 
 Introduction to Android 

 

 13
9 

 

 

 

image. Then, a layout is specified as a container for the preview through 
FrameLayout. Next, Camera.takePicture() method is used to capture a 
picture and MediaRecorder class is used to capture a video. Configuration 
of the MediaRecorder is vital. Example code with the steps for 
configuration is shown below. Also, note that MediaRecorder can be used 
to create videos from captured photos. Time lapse video allows users to 
create video clips that combine pictures taken a few seconds or minutes 
apart. This feature uses MediaRecorder to record the images for a time 
lapse sequence.  

 

Camera is a resource that is shared by many applications on a device. 
Your application can make use of the camera after getting an instance of 
Camera, and you must be particularly careful to release the camera object 
when your application stops using it, and as soon as your application is 
paused (Activity.onPause()). If your application does not properly release 
the camera, all subsequent attempts to access the camera, including those 
by your own application, will fail and may cause your or other 
applications to shut down. 

To release an instance of the Camera object, use the Camera.release() 
method, as shown in the example code below. 

https://developer.android.com/reference/android/hardware/Camera.html
https://developer.android.com/reference/android/hardware/Camera.html
https://developer.android.com/reference/android/app/Activity.html#onPause%28%29
https://developer.android.com/reference/android/hardware/Camera.html
https://developer.android.com/reference/android/hardware/Camera.html#release%28%29


 

 

Unit 10 Integrating Multimedia 
 

 

14
0 

 

 

 

 

Using existing camera applications 

It is also important to note that existing camera applications can be 
invoked through the Intent class to capture pictures and videos. The 
following example demonstrates how to construct an image capture intent 
and execute it. 

 

The following example demonstrates how to construct a video capture 
intent and execute it. 



 

 
 Introduction to Android 

 

 14
1 

 

 

 

 

 

The general steps for creating a custom camera interface for your 
application are as follows: (***STEPS instead of bullets -> FLOW 
CHART) 

• Detect and Access Camera - Create code to check for the 
existence of cameras and request access. 

• Create a Preview Class - Create a camera preview class that 
extends SurfaceView and implements the SurfaceHolder 
interface. This class previews the live images from the camera. 

• Build a Preview Layout - Once you have the camera preview 
class, create a view layout that incorporates the preview and the 
user interface controls you want. 

• Setup Listeners for Capture - Connect listeners for your 
interface controls to start image or video capture in response to 
user actions, such as pressing a button. 

• Capture and Save Files - Setup the code for capturing pictures 
or videos and saving the output. 

• Release the Camera - After using the camera, your application 
must properly release it for use by other applications.  

 

Camera hardware is a shared resource that must be carefully managed so 
your application does not collide with other applications that may also 
want to use it. The following sections discusses how to detect camera 
hardware, how to request access to a camera, how to capture pictures or 
video and how to release the camera when your application is done using 
it. 

https://developer.android.com/reference/android/view/SurfaceView.html
https://developer.android.com/reference/android/view/SurfaceHolder.html


 

 

Unit 10 Integrating Multimedia 
 

 

14
2 

 

 

 

 

Activity 

 

Activity 10.3 

Write a code to play an audio file when a photo is open to view. Assume 
that the photo and the audio file are stored in the device memory.  

 

 

Next, we will discuss the different formats/codes supported for images, 
audio and video files in the Android platform.  

10.4 Supported Media Formats 

When working with multimedia for Android application development, it 
is important to understand the core file formats and codec support that is 
provided (or in-built) in the Android platform. MediaCodec class is 
useful to access low-level media codecs, which are the encoder/decoder 
components. This class is part of the Android low-level multimedia 
support infrastructure. A codec processes input data to generate output 
data. Input data can be compressed data, raw audio data and raw video 
data. These input data are processed asynchronously and use buffers to 
store the output. Once the output is consumed, the buffers are released 
back to the codec. 

Different codecs are supported with encoding parameters. These 
parameters include, resolution, bit-rate, and type of channel. Here we 
have summarized (in Table10.1), the codec support provided for image, 
audio and video. It is important to note that some mobile devices may 
provide support for additional formats/codecs not listed explicitly in 
Table10.1.  

 

Table10.1: Core Media Support in Android for Audio, Video and Images. 
(Source: Content summarized based on the information given in 
https://developer.android.com/guide/appendix/media-formats.html) 
 

Multimedia Media CODEC 

Audio ● AAC LC 
● HE-AACv1 (AAC+) 
● HE-AACv2 (enhanced AAC+) 
● AMR-NB 
● AMR-WB 
● FLAC 
● MP3 
● MIDI 

https://developer.android.com/guide/appendix/media-formats.html


 

 
 Introduction to Android 

 

 14
3 

 

 

 

● Vorbis 
● Opus 
● wavw 

Video ● H.263 
● H.264 AVC 
● H.265 HEVC 
● MPEG-4 SP 
● VP8 
● VP9 

Images ● JPEG 
● GIF 
● BMP 
● PNG 
● WebP 

 

In this unit we have discussed how to incorporate multimedia functions 
when developing an Android application.  

Unit summary 

 

 

 

This unit covered the topics on how to integrate multimedia in different 
Android applications. The unit discussed how to utilize multimedia with 
appropriate examples and code snippets. To further enhance your skills 
and understanding activities and supplementary video were provided. 

 

  



 

 

Unit 11 Saving Data on Android Devices 
 

 

14
4 

 

 

 

Unit 11 

Saving Data on Android Devices 

Introduction 

In this unit you will learn about different methods to store data locally in 
Android. You will learn about how to use these different options and 
when to use them.  

You will further learn about data management using SQLite. The videos 
available for this unit will guide you on these data related operations.  

On the completion of this unit you will be able to integrate data 
management functionality to Android applications that you develop. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ Compare and contrast the different methods of persisting data locally. 

▪ Write a program to access data in internal file system of an Android 
device and a SD card 

▪ Use SQLite to create, alter update data tables and manipulate data. 

 

 

Terminology 

 

Persisting data: denotes information that is infrequently accessed 
and not likely to be modified 

SD Card: Secure Digital (SD) is a non-volatile memory 
card format  

SQLite: C library used for database software 

 

 11.1 Android Storage Options 

Android provides several options for you to save persistent application 
data. The solution you choose depends on your specific needs, such as 
whether the data should be private to your application or accessible to 
other applications (and the user) and how much space your data requires.  

Your data storage options are the following: 

i. Shared Preferences - Store private primitive data as key-value 
pairs. 



 

 
 Introduction to Android 

 

 14
5 

 

 

 

ii. Internal Storage - Store private data on the device memory. 

iii. External Storage - Store public data on the shared external 
storage. 

iv. SQLite Databases - Store structured data in a private database. 

v. Remote server- Store data on a remotely hosted server. 

In the following sections, we will discuss about the first four storage 
options mentioned above. We will however, focus only on the first four 
options and will not discuss about saving persistent data on cloud or other 
network location.   

11.2 Shared Preferences 

The SharedPreferences class provides a general framework that allows 
you to save and retrieve persistent key-value pairs of primitive data types. 
You can use SharedPreferences to save any primitive data: booleans, 
floats, ints, longs, and strings. This data will persist across user units 
(even if your application is killed). These data will only be removed only 
by uninstalling the application from the device or clearing the 
Application data via Settings menu. Also, data saved in Shared 
Preferences are private to this application only and not accessible by 
anyway for any other application on the device. We will discuss how and 
when to use shared preferences below.  

When to use Shared Preferences? 

If you need to save simple data for your application, the simplest and 
straight forward method is to use Shared Preferences. It is generally used 
to save simple data like integer, double, boolean, and short text. As 
Example, it is used to save application settings or user login info. 

Using Shared Preferences 

To get a SharedPreferences object for your application, use one of two 
methods: 

getSharedPreferences() - Use this method if you need multiple 
preferences files identified by name, which you specify with the first 
parameter. 

getPreferences() - Use this method if you need only one preferences file 
for your Activity. Because this will be the only preferences file for your 
Activity, it is not required to provide a name. 

Write to Shared Preferences 

To write to a shared preferences file, create a 
‘SharedPreferences.Editor’by calling edit() on your SharedPreferences. 

Pass the keys and values you want to write with methods such as putInt() 
and putString(). Then call commit() to save the changes. For example: 

 



 

 

Unit 11 Saving Data on Android Devices 
 

 

14
6 

 

 

 

SharedPreferences sharedPref = 
getActivity().getPreferences(Context.MODE_PRIVATE); 
SharedPreferences.Editor editor = sharedPref.edit(); 
editor.putInt(getString(R.string.saved_high_score), 
newHighScore); 
editor.commit(); 

Read from Shared Preferences 

To retrieve values from a shared preferences file, call methods such as 
getInt() and getString(), providing the key for the value you want, and 
optionally a default value to return if the key isn't present. For example: 

SharedPreferences sharedPref = 
getActivity().getPreferences(Context.MODE_PRIVATE); 
int defaultValue = 
getResources().getInteger(R.string.saved_high_score_de
fault); 
long highScore = 
sharedPref.getInt(getString(R.string.saved_high_score)
, defaultValue); 

Here is an example that saves a preference for silent keypress mode in a 
calculator:  

public class Calc extends Activity { 
    public static final String PREFS_NAME =  
                                   "MyPrefsFile"; 
    @Override 
    protected void onCreate(Bundle state){ 
       super.onCreate(state); 
       . . . 
       // Restore preferences 
       SharedPreferences settings = 
getSharedPreferences(PREFS_NAME, 0); 
       boolean silent = 
settings.getBoolean("silentMode", false); 
       setSilent(silent); 
    } 
    @Override 
    protected void onStop(){ 
       super.onStop(); 
 
      // Need an Editor object to make preference changes. 
      // All objects are from android.context.Context 
      SharedPreferences settings = 
getSharedPreferences(PREFS_NAME, 0); 
      SharedPreferences.Editor editor = 
settings.edit(); 
      editor.putBoolean("silentMode", mSilentMode); 
 
      // Commit the edits! 
      editor.commit(); 
    } 

 

 

 



 

 
 Introduction to Android 

 

 14
7 

 

 

 

Delete Shared Preference Data 

You have two options to delete data persisted as Shared Preference; 

i. Delete a specific item 

ii. Delete all data 

Delete a specific item 

SharedPreferences  sharedPref = 
getApplicationContext().getSharedPreferences("MyAppDat
a", 0); 

Editor sharedPrefEditor = sharedPref.edit();    

 

sharedPrefEditor.remove(key); // key of the data you 
want to delete 

sharedPrefEditor.commit(); 

Delete all Data 

SharedPreferences sharedPref = 
getApplicationContext().getSharedPreferences("MyAppDat
a", 0); 

Editor sharedPrefEditor = sharedPref.edit(); 

sharedPrefEditor.clear(); //clear all data inside 
MyAppData Shared Preference File 

sharedPrefEditor.commit(); 

The next section will discuss about the internal storage options available 
with Android.  

Activity 

Activity 11.1 

Why do we need shared preferences to store persistent data? 

 

 

11.3 Internal Storage 

You can save files directly on the device's internal storage. By default, 
files saved to the internal storage are private to your application and other 
applications cannot access them (nor can the user). When the user 
uninstalls your application, these files are removed. Data will be removed 



 

 

Unit 11 Saving Data on Android Devices 
 

 

14
8 

 

 

 

only by uninstalling the application from the device. 

When saving a file to internal storage, you can acquire the appropriate 
directory as a File by calling one of two methods: 

getFilesDir() - Returns a ‘File’ representing an internal directory for your 
app. 

getCacheDir() - Returns a ‘File’ representing an internal directory for 
your app's temporary cache files. Be sure to delete each file once it is no 
longer needed and implement a reasonable size limit for the amount of 
memory you use at any given time, such as 1MB. If the system begins 
running low on storage, it may delete your cache files without warning. 

We will now discuss how and when to use internal storage.  

 

When to use internal storage? 

The amount of data in Internal Storage depends on the device. Therefore 
do not try to save a large persistent file because it may crash your 
application if there is not enough space available on the device. 
Preferably, keep any data under 1M such as text files or xml files. 

 

Write files to internal storage 

The following steps show how to create and write a private file to the 
internal storage: 

Step 1 - Call openFileOutput() with the name of the file and the operating 
mode. This returns a FileOutputStream. 

Step 2 - Write to the file with write(). 

Step 3 - Close the stream with close(). 

For example: 

String FILENAME = "hello_file"; 
String string = "hello world!"; 
 
FileOutputStream fos = openFileOutput(FILENAME, 
Context.MODE_PRIVATE); 
fos.write(string.getBytes()); 
fos.close(); 

MODE_PRIVATE will create the file (or replace a file of the same name) 
and make it private to your application. Other modes available are: 
MODE_APPEND, MODE_WORLD_READABLE, and 
MODE_WORLD_WRITEABLE.  

 

Read from Internal Storage 

To read a file from internal storage: 

Step 1 - Call openFileInput() and pass it the name of the file to read. This 
returns a FileInputStream. 

Step 2 - Read bytes from the file with read(). 



 

 
 Introduction to Android 

 

 14
9 

 

 

 

Step 3 - Then close the stream with close(). 

Tip: If you want to save a static file in your application at compile time, 
save the file in your project res/raw/ directory. You can open it with 
openRawResource(), passing the R.raw.<filename> resource ID. This 
method returns an InputStream that you can use to read the file (but you 
cannot write to the original file).  

 

Delete Internal Storage Data 

The following examples shows how to delete a file from the internal 
storage.  

File fileDir = getFilesDir();  

File file = new File(fileDir, "fileName"); 

file.delete(); 

 

Saving cache files 

If you would like to cache some data, rather than store it persistently, you 
should use getCacheDir() to open a ‘File’ that represents the internal 
directory where your application should save temporary cache files. 

When the device is low on internal storage space, Android may delete 
these cache files to recover space. However, you should not rely on the 
system to clean up these files for you. You should always maintain the 
cache files yourself and stay within a reasonable limit of space consumed, 
such as 1MB. When the user uninstalls your application, these files are 
removed. 

Next, we will focus on external storage options available with Android.  

11.4 External Storage 

Every Android-compatible device supports a shared "external storage" 
that you can use to save files. This can be a removable storage media 
(such as an SD card) or an internal (non-removable) storage. Files saved 
to the external storage are world-readable and can be modified by the 
user when they enable USB mass storage to transfer files on a computer. 
We will see how and when to use the external storage along with 
checking the availability of the media device and managing the visibility 
your files to other apps.  

 

When to use External Storage? 

Use External Storage whenever you need to save large files such as audio 
or video files and can be retrieved by repeatedly. Also you can use this if 
want your files to be shared through different application like statistics 



 

 

Unit 11 Saving Data on Android Devices 
 

 

15
0 

 

 

 

files. 

Getting access to external storage 

In order to read or write files on the external storage, your app must 
acquire the READ_EXTERNAL_STORAGE or 
WRITE_EXTERNAL_STORAGE system permissions.  

<manifest ...> 
    <uses-permission 
android:name="android.permission.WRITE_EXTERNAL_STORAG
E" /> 
    ... 
</manifest> 

If you need to both read and write files, then you need to request only the 
WRITE_EXTERNAL_STORAGE permission, because it implicitly 
requires read access as well. 

Caution: Currently, all apps have the ability to read the external storage 
without a special permission. However, this is going to be changed in a 
future release. If your app needs to read the external storage (but not 
write to it), then you will need to declare the 
READ_EXTERNAL_STORAGE permission. To ensure that your app 
continues to work as expected, you should declare this permission now, 
before the change takes effect. 

<manifest ...> 
    <uses-permission 
android:name="android.permission.READ_EXTERNAL_STORAGE
" /> 
    ... 
</manifest> 

However, if your app uses the WRITE_EXTERNAL_STORAGE 
permission, then it implicitly has permission to read the external storage 
as well. 

You do not need any permissions to save files on the internal storage. 
Your application always has permission to read and write files in its 
internal storage directory. 

Checking media availability 

Before you do any work with the external storage, you should always call 
getExternalStorageState() to check whether a compatible media is 
available. The media might be mounted to a computer, read-only, or in 
some other state. For example, here are a couple methods you can use to 
check the availability: 

 

 

 

 

 

 



 

 
 Introduction to Android 

 

 15
1 

 

 

 

/* Checks if external storage is available for read and write */ 

public boolean isExternalStorageWritable() { 
    String state = 
Environment.getExternalStorageState(); 
    if (Environment.MEDIA_MOUNTED.equals(state)) { 
        return true; 
    } 
    return false; 
} 
 
/* Checks if external storage is available to at least read */ 
public boolean isExternalStorageReadable() { 
    String state = 
Environment.getExternalStorageState(); 
    if (Environment.MEDIA_MOUNTED.equals(state) || 
        Environment.MEDIA_MOUNTED_READ_ONLY.equals(sta
te)) { 
        return true; 
    } 
    return false; 
} 

The getExternalStorageState() method returns other states that you might 
want to check, such as whether the media is being shared (connected to a 
computer), is missing entirely, has been removed badly, etc. You can use 
these to notify the user with more information when your application 
needs to access the media. 

Query Free Space 

If you know ahead of time how much data you are saving, you can find 
out whether sufficient space is available without causing an IOException 
by calling getFreeSpace() or getTotalSpace(). These methods provide the 
current available space and the total space in the storage volume, 
respectively. 

Saving files that can be shared with other apps 

You may require sharing files across other apps. Sometimes, you may 
want to hide your files from others. We will now see how to share with or 
hide your files from other apps.  

Hiding your files from the Media Scanner 

To hide your files, include an empty file named .nomedia in your external 
files directory (note the dot prefix in the filename). This prevents media 
scanner from reading your media files and providing them to other apps 
through the MediaStore content provider. However, if your files are truly 
private to your app, you should save them in an app-private directory. 

Generally, new files that the user may acquire through your app should be 
saved to a "public" location on the device where other apps can access 
them and the user can easily copy them from the device. When doing so, 
you should use to one of the shared public directories, such as Music/, 



 

 

Unit 11 Saving Data on Android Devices 
 

 

15
2 

 

 

 

Pictures/, and Ringtones/. 

Saving files that are public to the users 

To get a ‘File’ representing the appropriate public directory, call 
getExternalStoragePublicDirectory(), passing it the type of directory you 
want, such as DIRECTORY_MUSIC, DIRECTORY_PICTURES, 
DIRECTORY_RINGTONES, or others. By saving your files to the 
corresponding media-type directory, the system's media scanner can 
properly categorize your files in the system (for instance, ringtones 
appear in system settings as ringtones, not as music). 

For example, here is a method that creates a directory for a new photo 
album in the public pictures directory: 

public File getAlbumStorageDir(String albumName) { 
    // Get the directory for the user's public pictures directory. 
    File file = new 
File(Environment.getExternalStoragePublicDirectory( 
            Environment.DIRECTORY_PICTURES), 
albumName); 
    if (!file.mkdirs()) { 
        Log.e(LOG_TAG, "Directory not created"); 
    } 
    return file; 
} 

Saving files that are app-private 

If you want to save files that are private to your app, you can acquire the 
appropriate directory by calling getExternalFilesDir() and ‘passing’ it a 
name indicating the type of directory you would like. Each directory 
created this way is added to a parent directory that encapsulates all your 
app's external storage files, which the system deletes when the user 
uninstalls your app. For example, here's a method you can use to create a 
directory for an individual photo album: 

public File getAlbumStorageDir(Context context, String 
albumName) { 
    // Get the directory for the app's private pictures directory. 

 

    File file = new File(context.getExternalFilesDir( 
            Environment.DIRECTORY_PICTURES), 
albumName); 
    if (!file.mkdirs()) { 
        Log.e(LOG_TAG, "Directory not created"); 
    } 
    return file; 
} 

If none of the pre-defined sub-directory names suit your files, you can 
instead call getExternalFilesDir() and pass null. This returns the root 
directory for your app's private directory on the external storage. 

Remember that getExternalFilesDir() creates a directory inside a 
directory that is deleted when the user uninstalls your app. If the files you 
are saving should remain available after the user uninstalls your app for 



 

 
 Introduction to Android 

 

 15
3 

 

 

 

instance when your app is a camera and the user will want to keep the 
photos. Instead use getExternalStoragePublicDirectory(). 

Caution: Although the directories provided by getExternalFilesDir() and 
getExternalFilesDirs() are not accessible by the MediaStore content 
provider, other apps with the READ_EXTERNAL_STORAGE permission 
can access all files on the external storage, including these. If you need to 
completely restrict access for your files, you should instead write your 
files to the internal storage. 

Saving cache files 

To open a ‘File’ that represents the external storage directory where you 
should save cache files, call getExternalCacheDir(). If the user uninstalls 
your application, these files will be automatically deleted. 

Similar to ContextCompat.getExternalFilesDirs(), mentioned above, you 
can also access a cache directory on a secondary external storage (if 
available) by calling ContextCompat.getExternalCacheDirs(). 

Delete a File 

You should always delete files that you no longer need. The most 
straightforward way to delete a file is to have the opened file reference 
call delete() on itself. 

myFile.delete(); 

If the file is saved on internal storage, you can also ask the Context to 
locate and delete a file by calling deleteFile(): 

myContext.deleteFile(fileName); 

Note: When the user uninstalls your app, the Android system deletes the 
following: 

All files you saved on internal storage 

All files you saved on external storage using getExternalFilesDir(). 

However, you should manually delete all cached files created with 
getCacheDir() on a regular basis and also regularly delete other files you 
no longer need. 

The next section will discuss about how to save data in SQLite databases, 
read the stored data when required and manipulating the stored data as 
per your requirement.  

 

 



 

 

Unit 11 Saving Data on Android Devices 
 

 

15
4 

 

 

 

Activity 

Activity 11.2 

Compare and contrast data storage using internal storage and external 
storage options.  

 

11.5 Saving Data in SQLite Databases 

Saving data to a database is ideal for repeating or structured data, such as 
contact information. This class assumes helps you get started with SQLite 
databases on Android. The APIs you will need to use a database on 
Android are available in the android.database.sqlite package. We will 
discuss how and when to use databases as a storage option.  

When to use SQLite DB? 

You can use databases to store user data as per your app requirement. 
Otherwise, it does not have a specific reason to use a database.  

 
Define a Schema and Contract 

One of the main principles of SQL databases is the schema: a formal 
declaration of how the database is organized. The schema is reflected in 
the SQL statements that you use to create your database. You may find it 
helpful to create a companion class, known as a contract class, which 
explicitly specifies the layout of your schema in a systematic and self-
documenting way. 

A contract class is a container for constants that define names for URIs, 
tables, and columns. The contract class allows you to use the same 
constants across all the other classes in the same package. This let you 
change a column name in one place and have it propagate throughout 
your code. 

A good way to organize a contract class is to put definitions that are 
global to your whole database in the root level of the class. Then create 
an inner class for each table that enumerates its columns. 

Note: By implementing the BaseColumns interface, your inner class can 
inherit a primary key field called _ID that some Android classes such as 
cursor adaptors will expect it to have. It is not required, but this can help 
your database work harmoniously with the Android framework. 

For example, this snippet defines the table name and column names for a 
single table: 

 

 

 

 



 

 
 Introduction to Android 

 

 15
5 

 

 

 

public final class FeedReaderContract { 
    // To prevent someone from accidentally instantiating the  
// contract class,give it an empty constructor. 
    public FeedReaderContract() {} 
 
    /* Inner class that defines the table contents */ 
    public static abstract class FeedEntry implements 
BaseColumns { 
        public static final String TABLE_NAME = 
"entry"; 
        public static final String 
COLUMN_NAME_ENTRY_ID = "entryid"; 
        public static final String COLUMN_NAME_TITLE = 
"title"; 
        public static final String 
COLUMN_NAME_SUBTITLE = "subtitle"; 
        ... 
    } 
} 

Create a Database Using a SQL Helper 

Once you have defined how your database looks, you should implement 
methods that create and maintain the database and tables. Here are some 
typical statements that create and delete a table: 

private static final String TEXT_TYPE = " TEXT"; 
private static final String COMMA_SEP = ","; 
private static final String SQL_CREATE_ENTRIES = 
    "CREATE TABLE " + FeedEntry.TABLE_NAME + " (" + 
    FeedEntry._ID + " INTEGER PRIMARY KEY," + 
    FeedEntry.COLUMN_NAME_ENTRY_ID + TEXT_TYPE + 
COMMA_SEP + 
    FeedEntry.COLUMN_NAME_TITLE + TEXT_TYPE + 
COMMA_SEP + 
    ... // Any other options for the CREATE command 
    " )"; 
 
private static final String SQL_DELETE_ENTRIES = 
    "DROP TABLE IF EXISTS " + FeedEntry.TABLE_NAME; 

Just like files that you save on the device's internal storage, Android 
stores your database in private disk space associated with the application. 
Your data is secure, because by default this area is not accessible to other 
applications. 

A useful set of APIs is available in the SQLiteOpenHelper class. When 
you use this class to obtain references to your database, the system 
performs the potentially long-running operations of creating and updating 
the database only when needed and not during app startup. All you need 
to do is call getWritableDatabase() or getReadableDatabase(). 

Note: Because they can be long-running, be sure that you call 
getWritableDatabase() or getReadableDatabase() in a background 



 

 

Unit 11 Saving Data on Android Devices 
 

 

15
6 

 

 

 

thread, such as with AsyncTask or IntentService. 

To use SQLiteOpenHelper, create a subclass that overrides the 
onCreate(), onUpgrade() and onOpen() callback methods. You may also 
want to implement onDowngrade(), but it's not required. 

For example, here is an implementation of SQLiteOpenHelper that uses 
some of the commands shown above: 

public class FeedReaderDbHelper extends 
SQLiteOpenHelper { 
    // If you change the database schema, you must 
increment the database version. 
    public static final int DATABASE_VERSION = 1; 
    public static final String DATABASE_NAME = 
"FeedReader.db"; 
 
    public FeedReaderDbHelper(Context context) { 
        super(context, DATABASE_NAME, null, 
DATABASE_VERSION); 
    } 
    public void onCreate(SQLiteDatabase db) { 
        db.execSQL(SQL_CREATE_ENTRIES); 
    } 
    public void onUpgrade(SQLiteDatabase db, int 
oldVersion, int newVersion) { 
        // This database is only a cache for online 
data, so its upgrade policy is 
        // to simply to discard the data and start 
over 
        db.execSQL(SQL_DELETE_ENTRIES); 
        onCreate(db); 
    } 
    public void onDowngrade(SQLiteDatabase db, int 
oldVersion, int newVersion) { 
        onUpgrade(db, oldVersion, newVersion); 
    } 
} 

To access your database, instantiate your subclass of SQLiteOpenHelper: 

FeedReaderDbHelper mDbHelper = new 
FeedReaderDbHelper(getContext()); 

Put Information into a Database 

Insert data into the database by passing a ContentValues object to the 
insert() method: 

 

 

 

 

 

 

 



 

 
 Introduction to Android 

 

 15
7 

 

 

 

// Gets the data repository in write mode 
SQLiteDatabase db = mDbHelper.getWritableDatabase(); 
 
// Create a new map of values, where column names are the keys 
ContentValues values = new ContentValues(); 
values.put(FeedEntry.COLUMN_NAME_ENTRY_ID, id); 
values.put(FeedEntry.COLUMN_NAME_TITLE, title); 
values.put(FeedEntry.COLUMN_NAME_CONTENT, content); 
 
// Insert the new row, returning the primary key value of the new 
//row 
long newRowId; 
newRowId = db.insert( 
         FeedEntry.TABLE_NAME, 
         FeedEntry.COLUMN_NAME_NULLABLE, 
         values); 

The first argument for insert() is simply the table name. The second 
argument provides the name of a column in which the framework can 
insert NULL in the event that the ContentValues is empty (if you instead 
set this to "null", then the framework will not insert a row when there are 
no values). 

Read Information from a Database 

To read from a database, use the query() method, passing it your selection 
criteria and desired columns. The method combines elements of insert() 
and update(), except the column list defines the data you want to fetch, 
rather than the data to insert. The results of the query are returned to you 
in a Cursor object. 

SQLiteDatabase db = mDbHelper.getReadableDatabase(); 
 
// Define a projection that specifies which columns 
from the database 
// you will actually use after this query. 
String[] projection = { 
    FeedEntry._ID, 
    FeedEntry.COLUMN_NAME_TITLE, 
    FeedEntry.COLUMN_NAME_UPDATED, 
    ... 
    }; 
 
// How you want the results sorted in the resulting 
Cursor 
String sortOrder = 
    FeedEntry.COLUMN_NAME_UPDATED + " DESC"; 
 
Cursor c = db.query( 
    FeedEntry.TABLE_NAME,  // The table to query 
    projection,            // The columns to return 
    selection,            // The columns for the WHERE 
clause 
    selectionArgs,        // The values for the WHERE 
clause 



 

 

Unit 11 Saving Data on Android Devices 
 

 

15
8 

 

 

 

    null,                // don't group the rows 
    null,               // don't filter by row groups 
    sortOrder           // The sort order 
    ); 

To look at a row in the cursor, use one of the Cursor move methods, 
which you must always call before you begin reading values. Generally, 
you should start by calling moveToFirst(), which places the "read 
position" on the first entry in the results. For each row, you can read a 
column's value by calling one of the Cursor get methods, such as 
getString() or getLong(). For each of the get methods, you must pass the 
index position of the column you desire, which you can get by calling 
getColumnIndex() or getColumnIndexOrThrow().  

For example: 

cursor.moveToFirst(); 
long itemId = cursor.getLong( 
    cursor.getColumnIndexOrThrow(FeedEntry._ID) 
); 

Note: You can execute SQLite queries using the SQLiteDatabase query() 
methods, which accept various query parameters, such as the table to 
query, the projection, selection, columns, grouping, and others. For 
complex queries, such as those that require column aliases, you should 
use SQLiteQueryBuilder, which provides several convenient methods for 
building queries. 

 

Delete Information from a Database 

To delete rows from a table, you need to provide selection criteria that 
identify the rows. The database API provides a mechanism for creating 
selection criteria that protects against SQL injection. The mechanism 
divides the selection specification into a selection clause and selection 
arguments. The clause defines the columns to look at, and also allows 
you to combine column tests. The arguments are values to test against 
that are bound into the clause. Because the result is not handled the same 
as a regular SQL statement, it is immune to SQL injection. 

// Define 'where' part of query. 
String selection = FeedEntry.COLUMN_NAME_ENTRY_ID + " 
LIKE ?"; 
// Specify arguments in placeholder order. 
String[] selectionArgs = { String.valueOf(rowId) }; 
// Issue SQL statement. 
db.delete(table_name, selection, selectionArgs); 

 

Update a Database 

When you need to modify a subset of your database values, use the 
update() method. 

Updating the table combines the content values syntax of insert() with the 
where syntax of delete(). 



 

 
 Introduction to Android 

 

 15
9 

 

 

 

SQLiteDatabase db = mDbHelper.getReadableDatabase(); 
 
// New value for one column 
ContentValues values = new ContentValues(); 
values.put(FeedEntry.COLUMN_NAME_TITLE, title); 
 
// Which row to update, based on the ID 
String selection = FeedEntry.COLUMN_NAME_ENTRY_ID + " 
LIKE ?"; 
String[] selectionArgs = { String.valueOf(rowId) }; 
 
int count = db.update( 
    FeedReaderDbHelper.FeedEntry.TABLE_NAME, 
    values, 
    selection, 
    selectionArgs);  

With that we have come to the end of this unit and now you are in a 
position to use data management on your apps.  

Activity 

Activity 11.3 

Choose a popular game app and discuss how each of the storage options 
you learnt is used in that app. 

 

Unit summary 

 

 

In this unit we discussed about the four of the five methods used to persist 
data on Android devices. They are namely; Shared preferences, Internal 
storage, external storage and external database. We also learnt about 
when to use each of these options and how we can use them in apps. The 
important things to keep in your mind is that the privacy level of the 
files/data and the size of the data.  

References 

https://developer.android.com/guide/topics/sensors/sensors_overview.htm
l 

https://developer.android.com/training/location/index.html 

CC by 2.5 – Android Developer Forum (developer.android.com) 



 

 

Unit 12 Locating and Sensing 
 

 

16
0 

 

 

 

Unit 12 

Locating and Sensing 

Introduction 

In this unit you will be introduced to various sensors available in an 
Android device. The availability of a particular sensor depends on the 
device you use. You will learn how to use these sensors accessing 
relevant API’s to obtain data and use them in applications.  

You will also learn about Google Maps and how location awareness can 
be achieved in applications.  

A video is incorporated in this unit to help you to understand more about 
sensors and Google map. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ identify functionality of the common sensors available in Android 
devices.  

▪ illustrate how sensors can be used in apps with examples. 

▪ develop a small app to demonstrate the context awareness of the users 
with location. 

 

Terminology 

 

sensors: measure motion, orientation, position, and 
various environmental conditions 

context awareness: refers to a general class of mobile systems that 
can sense their physical environment 

12.1 Introduction to Sensors 

Most Android devices have built-in sensors that measure motion, 
orientation, position, and various environmental conditions. These 
sensors are capable of providing raw data with high precision and 
accuracy, and are useful if you want to monitor three-dimensional device 
movement or positioning, or you want to monitor changes in the ambient 
environment near a device.  

Some of these sensors are hardware-based and some are software-based. 
Hardware-based sensors are physical components built into a handset or 
tablet device. They derive their data by directly measuring specific 
environmental properties, such as acceleration, geomagnetic field 



 

 
 Introduction to Android 

 

 16
1 

 

 

 

strength, or angular change. Software-based sensors are not physical 
devices, although they mimic hardware-based sensors. Software-based 
sensors derive their data from one or more of the hardware-based sensors 
and are sometimes called virtual sensors or synthetic sensors. The linear 
acceleration sensor and the gravity sensor are examples of software-based 
sensors. Appendix 12.1 summarizes the sensor types that are supported 
by the Android platform. 

The Android platform supports three broad categories of sensors: 

• Motion sensors - These sensors measure acceleration forces 
and rotational forces along three axes (x,y,and z). List of 
Motion sensors that are supported on the Android platform is 
given in reference 12.2 

• Environmental sensors - These sensors measure various 
environmental parameters, such as ambient air temperature 
and pressure, illumination, and humidity. Appendix 12.3 lists 
the environment sensors that are supported on the Android 
platform 

• Position sensors - These sensors measure the physical 
position of a device. Appendix 12.4 lists the position sensors 
that are supported on the Android platform.  

In the next section, we will discuss about the Android sensor framework. 

 12.2 Android Sensor Framework 

The sensor framework provides several classes and interfaces that help 
you perform a wide variety of sensor-related tasks. For example, you can 
use the sensor framework to do the following: 

• Determine which sensors are available on a device. 

• Determine an individual sensor's capabilities, such as its 
maximum range, manufacturer, power requirements, and 
resolution. 

• Acquire raw sensor data and define the minimum rate at 
which you acquire sensor data. 

• Register and unregister sensor event listeners that 
monitor sensor changes. 

Now, we will see the classes and interfaces available in the sensor 
framework. 

Classes and Interfaces Available in the Sensor Framework 

The sensor framework is part of Android. Hardware package includes the 
following classes and interfaces: 

Sensor Manager 

You can use this class to create an instance of the sensor service. This 



 

 

Unit 12 Locating and Sensing 
 

 

16
2 

 

 

 

class provides various methods for accessing and listing sensors, 
registering and unregistering sensor event listeners, and acquiring 
orientation information. This class also provides several sensor constants 
that are used to report sensor accuracy, set data acquisition rates, and 
calibrate sensors. 

Sensor 

You can use this class to create an instance of a specific sensor. This class 
provides various methods that let you determine a sensor's capabilities. 

Sensor Event 

The system uses this class to create a sensor event object, which provides 
information about a sensor event. A sensor event object includes the 
following information: the raw sensor data, the type of sensor that 
generated the event, the accuracy of the data, and the timestamp for the 
event. 

Sensor Event Listener 

You can use this interface to create two callback methods that receive 
notifications (sensor events) when sensor values change or when sensor 
accuracy changes. 

In the next section we will learn how to identify different sensors 
available on a device and the capabilities of each sensor.  

12.3 Identifying Sensors and sensor Capabilities 

Identifying sensors and sensor capabilities at runtime is useful if your 
application has features that rely on specific sensor types or capabilities. 
For example, you may want to identify all of the sensors that are present 
on a device and disable any application features that rely on sensors that 
are not present. Likewise, you may want to identify all of the sensors of a 
given type so you can choose the sensor implementation that has the 
optimum performance for your application. 

To identify the sensors that are on a device you first need to get a 
reference to the sensor service. To do this, you create an instance of the 
‘SensorManager’ class by calling the getSystemService() method and 
passing in the SENSOR_SERVICE argument.  

private SensorManager mSensorManager; 
... 
mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 

 

Next, you can get a listing of every sensor on a device by calling the 
getSensorList() method and using the TYPE_ALL constant.  

 

List<Sensor> deviceSensors = 
mSensorManager.getSensorList(Sensor.TYPE_ALL); 



 

 
 Introduction to Android 

 

 16
3 

 

 

 

If you want to list all of the sensors of a given type, you could use another 
constant instead of TYPE_ALL such as TYPE_GYROSCOPE, 
TYPE_LINEAR_ACCELERATION, or TYPE_GRAVITY.  

You can also determine whether a specific type of sensor exists on a 
device by using the getDefaultSensor() method. If a default sensor does 
not exist for a given type of sensor, the method call returns null, which 
means the device does not have that type of sensor. The following code 
checks whether there's a magnetometer on a device: 

private SensorManager mSensorManager; 
... 
mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 
if 
(mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_
FIELD) != null){ 
  // Success! There's a magnetometer. 
  } 
else { 
  // Failure! No magnetometer. 
  } 

In addition to listing the sensors that are on a device, you can use the 
public methods of the Sensor class to determine the capabilities and 
attributes of individual sensors. For example, you can use the 
getResolution() and getMaximumRange() methods to obtain a sensor's 
resolution and maximum range of measurement. You can also use the 
getPower() method to obtain a sensor's power requirements. 

Now that we have learnt how to identify sensors and their capabilities, it 
is time to learn how to monitor sensor events. The next section will 
discuss about monitoring sensor events. 

Activity 

Activity 12.1 

Find and list all the sensors available in your Android device.  

 

 12.4 Monitoring Sensor Events 

A sensor event occurs every time a sensor detects a change in the 
parameters it is measuring. A sensor event provides you with four pieces 
of information: the name of the sensor that triggered the event, the 
timestamp for the event, the accuracy of the event, and the raw sensor 
data that triggered the event. 

To monitor raw sensor data you need to implement two callback methods 



 

 

Unit 12 Locating and Sensing 
 

 

16
4 

 

 

 

that are exposed through the SensorEventListener interface: 
onAccuracyChanged() and onSensorChanged(). The Android system 
calls these methods whenever the following occurs: 

A sensor's accuracy changes.  

In this case the system invokes the onAccuracyChanged() method, 
providing you with a reference to the Sensor object that changed and the 
new accuracy of the sensor.  

A sensor reports a new value.  

In this case the system invokes the onSensorChanged() method, 
providing you with a SensorEvent object. A SensorEvent object contains 
information about the new sensor data, including: the accuracy of the 
data, the sensor that generated the data, the timestamp at which the data 
was generated, and the new data that the sensor recorded. 

The following code shows how to use the onSensorChanged() method to 
monitor data from the light sensor. This example displays the raw sensor 
data in a TextView that is defined in the main.xml file as sensor_data. 

 

public class SensorActivity extends Activity 
implements SensorEventListener { 
  private SensorManager mSensorManager; 
  private Sensor mLight; 
 
  @Override 
  public final void onCreate(Bundle 
savedInstanceState) { 
    super.onCreate(savedInstanceState); 
    setContentView(R.layout.main); 
 
    mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 
    mLight = 
mSensorManager.getDefaultSensor(Sensor.TYPE_LIGHT); 
  } 
  @Override 
  public final void onAccuracyChanged(Sensor sensor, 
int accuracy) { 
    // Do something here if sensor accuracy changes. 
  } 
 
  @Override 
  public final void onSensorChanged(SensorEvent event) 
{ 
    // The light sensor returns a single value. 
    // Many sensors return 3 values, one for each 
axis. 
    float lux = event.values[0]; 
    // Do something with this sensor value. 
  } 
 
  @Override 
  protected void onResume() { 
    super.onResume(); 



 

 
 Introduction to Android 

 

 16
5 

 

 

 

    mSensorManager.registerListener(this, mLight, 
SensorManager.SENSOR_DELAY_NORMAL); 
  } 
 
  @Override 
  protected void onPause() { 
    super.onPause(); 
    mSensorManager.unregisterListener(this); 
  } 
} 

In this example, the default data delay (SENSOR_DELAY_NORMAL) is 
specified when the registerListener() method is invoked. The data delay 
(or sampling rate) controls the interval at which sensor events are sent to 
your application via the onSensorChanged() callback method. 

 

Next, we will discuss about the sensor coordinate system.  

12.5 Sensor Coordinate System 

In general, the sensor framework uses a standard 3-axis coordinate 
system to express data values. For most sensors, the coordinate system is 
defined relative to the device's screen when the device is held in its 
default orientation (Figure 12.1).  

 

 

 

 

 

 

 

 

 

 

Figure 12.1- Coordinate system used by the Sensor API 

The most important point to understand about this coordinate system is 
that the axes are not swapped when the device's screen orientation 
changes—that is, the sensor's coordinate system never changes as the 
device moves. 

Another point to understand is that your application must not assume that 
a device's natural (default) orientation is portrait. The natural orientation 
for many tablet devices is landscape. And the sensor coordinate system is 



 

 

Unit 12 Locating and Sensing 
 

 

16
6 

 

 

 

always based on the natural orientation of a device. 

In the next section, we will discuss about the best practices for accessing 
and using sensors.  

 12.6 Best Practices for Accessing and Using Sensors 

Under this topic we will be explaining some of the best practices that you 
should follow when accessing and using sensors.   

Unregister sensor listeners 

Be sure to unregister a sensor's listener when you have finished using the 
sensor or when the sensor activity pauses. If a sensor listener is registered 
and its activity is paused, the sensor will continue to acquire data and use 
battery resources unless you unregister the sensor. Also there could be 
some exception the application runtime, if activity get destroyed without 
unregistering the sensor manager. The following code snippet shows how 
to use the onPause() method to unregister a listener: 

private SensorManager mSensorManager; 
  ... 
@Override 
protected void onPause() { 
  super.onPause(); 
  mSensorManager.unregisterListener(this); 
} 

 

Do not test your code on the emulator 

The default Android emulator cannot emulate sensors. You should test 
your sensor code on a physical device or emulator which capable to 
emulate the sensors as well. There are, however, sensor simulators that 
you can use to simulate sensor output. 

Do not block the onSensorChanged() method 

Sensor data can change at a high rate, which means the system may call 
the onSensorChanged(SensorEvent) method quite often. As a best 
practice, you should do as little as possible within the 
onSensorChanged(SensorEvent) method so you don't block it. If your 
application requires you to do any data filtering or reduction of sensor 
data, you should perform that work outside of the 
onSensorChanged(SensorEvent) method. 

Verify sensors before you use them 

Always verify that a sensor exists on a device before you attempt to 
acquire data from it. Don't assume that a sensor exists simply because it's 
a frequently-used sensor. Device manufacturers are not required to 
provide any particular sensors in their devices. 

Choose sensor delays carefully 

When you register a sensor with the registerListener() method, be sure 
you choose a delivery rate that is suitable for your application or use-
case. Sensors can provide data at very high rates. Allowing the system to 



 

 
 Introduction to Android 

 

 16
7 

 

 

 

send extra data that you don't need wastes system resources and uses 
battery power. 

Next, we will discuss about some of the commonly used sensors.  

 12.7 Commonly Used Sensors 

There are many different types of sensors. Under this topic we will be 
explaining some of the commonly used sensors accelerometer, Gravity 
Sensor, Gyroscope and Proximity Sensor.  

Accelerometer 

An acceleration sensor measures the acceleration applied to the device, 
including the force of gravity. The following code shows you how to get 
an instance of the default acceleration sensor: 

private SensorManager mSensorManager; 
private Sensor mSensor; 
  ... 
mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 
mSensor = 
mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROME
TER); 

 

It should be noted that the force of gravity (g) is always influencing the 
measured acceleration. For this reason, when the device is sitting on a 
table (and not accelerating), the accelerometer reads a magnitude of g = 
9.81 m/s2. Similarly, when the device is in free fall and therefore rapidly 
accelerating toward the ground at 9.81 m/s2, its accelerometer reads a 
magnitude of g = 0 m/s2. Therefore, to measure the real acceleration of 
the device, the contribution of the force of gravity must be removed from 
the accelerometer data. This can be achieved by applying a high-pass 
filter. Conversely, a low-pass filter can be used to isolate the force of 
gravity. The following example shows how you can do this: 

 

public void onSensorChanged(SensorEvent event){ 
  // In this example, alpha is calculated as t / (t + dT), 
  // where t is the low-pass filter's time-constant and 
  // dT is the event delivery rate. 
 
  final float alpha = 0.8; 
 
  // Isolate the force of gravity with the low-pass filter. 
  gravity[0] = alpha * gravity[0] + (1 - alpha) * 
event.values[0]; 
  gravity[1] = alpha * gravity[1] + (1 - alpha) * 
event.values[1]; 
  gravity[2] = alpha * gravity[2] + (1 - alpha) * 
event.values[2]; 



 

 

Unit 12 Locating and Sensing 
 

 

16
8 

 

 

 

 
  // Remove the gravity contribution with the high-pass filter. 
  linear_acceleration[0] = event.values[0] - 
gravity[0]; 
  linear_acceleration[1] = event.values[1] - 
gravity[1]; 
  linear_acceleration[2] = event.values[2] - 
gravity[2]; 
} 

In general, the accelerometer is a good sensor to use if you are 
monitoring device motion. Almost every Android-powered handset and 
tablet has an accelerometer, and it uses about 10 times less power than 
the other motion sensors. One drawback is that you might have to 
implement low-pass and high-pass filters to eliminate gravitational forces 
and reduce noise. 

Gravity Sensor 

The gravity sensor provides a three dimensional vector indicating the 
direction and magnitude of gravity. The following code shows you how 
to get an instance of the default gravity sensor: 

 

private SensorManager mSensorManager; 
private Sensor mSensor; 
... 
mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 
mSensor = 
mSensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY); 

 

The units are the same as those used by the acceleration sensor (m/s2), 
and the coordinate system is the same as the one used by the acceleration 
sensor 

 

Gyroscope 

The gyroscope measures the rate of rotation in rad/s around a device's x, 
y, and z axis. The following code shows you how to get an instance of the 
default gyroscope: 

 

private SensorManager mSensorManager; 
private Sensor mSensor; 
... 
mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 
mSensor = 
mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE)
; 

 



 

 
 Introduction to Android 

 

 16
9 

 

 

 

The sensor's coordinate system is the same as the one used for the 
acceleration sensor. Rotation is positive in the counter-clockwise 
direction. 

Standard gyroscopes provide raw rotational data without any filtering or 
correction for noise and drift (bias). In practice, gyroscope noise and drift 
will introduce errors that need to be compensated for. You usually 
determine the drift (bias) and noise by monitoring other sensors, such as 
the gravity sensor or accelerometer. 

Proximity Sensor 

The proximity sensor lets you determine how far away an object is from a 
device. The following code shows you how to get an instance of the 
default proximity sensor: 

 

private SensorManager mSensorManager; 
private Sensor mSensor; 
... 
mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 
mSensor = 
mSensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY)
; 

 

The proximity sensor is usually used to determine how far away a 
person's head is from the face of a handset device (for example, when a 
user is making or receiving a phone call). Most proximity sensors return 
the absolute distance, in cm, but some return only near and far values. 
The following code shows you how to use the proximity sensor: 

 

public class SensorActivity extends Activity 
implements SensorEventListener { 
  private SensorManager mSensorManager; 
  private Sensor mProximity; 
 
  @Override 
  public final void onCreate(Bundle 
savedInstanceState) { 
    super.onCreate(savedInstanceState); 
    setContentView(R.layout.main); 
 
    // Get an instance of the sensor service, and use 
that to get an instance of 
    // a particular sensor. 
    mSensorManager = (SensorManager) 
getSystemService(Context.SENSOR_SERVICE); 
    mProximity = 
mSensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY)



 

 

Unit 12 Locating and Sensing 
 

 

17
0 

 

 

 

; 
  } 
 
  @Override 
  public final void onAccuracyChanged(Sensor sensor, 
int accuracy) { 
    // Do something here if sensor accuracy changes. 
  } 
 
  @Override 
  public final void onSensorChanged(SensorEvent event) 
{ 
    float distance = event.values[0]; 
    // Do something with this sensor data. 
  } 
 
  @Override 
  protected void onResume() { 
    // Register a listener for the sensor. 
    super.onResume(); 
    mSensorManager.registerListener(this, mProximity, 
SensorManager.SENSOR_DELAY_NORMAL); 
  } 
 
  @Override 
  protected void onPause() { 
    // Be sure to unregister the sensor when the 
activity pauses. 
    super.onPause(); 
    mSensorManager.unregisterListener(this); 
  } 
} 

 

Next we will discuss about how to make your apps location-aware.  

 

Activity 

Activity 12.2 

What are the sensors/location details required in following category of 
apps? 

✓ Car racing game 

✓ Weather predictor 

✓ Navigation app 

✓ Video chat app 



 

 
 Introduction to Android 

 

 17
1 

 

 

 

 12.8 Making Your App Location-Aware 

One of the unique features of mobile applications is location awareness. 
Mobile users take their devices with them everywhere, and adding 
location awareness to your app offers users a more contextual experience. 
The location APIs available in Google Play services facilitate adding 
location awareness to your app with automated location tracking, 
geofencing (a facility that monitors whether a device is  near to a location 
of interest), and activity recognition.  

Android offers two ways to add location awareness to your apps; one 
through the Google Play services location APIs and the other is through 
the Android framework location API. However, the former is preferred 
over the latter as a way of adding location awareness to your app.  

In this section, we will discuss how to use the Google Play services 
location APIs in your app to get the current location, and get periodic 
location updates. In addition the same API’s can be used to maintain 

addresses and geofences. However, we will not discuss about addresses 
and geofences here.  

Specify App Permissions 

Apps that use location services must request location permissions. 
Android offers two location permissions: 
ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION. 
The permission you choose determines the accuracy of the location 
returned by the API. If you specify ACCESS_COARSE_LOCATION, 
the API returns a location with an accuracy approximately equivalent to a 
city block. 

Connect to Google Play Services 

To connect to the API, you need to create an instance of the Google Play 
services API client. For details about using the client, see the guide to 
Accessing Google APIs.  

In your activity's onCreate() method, create an instance of Google API 
Client, using the GoogleApiClient.Builder class to add the 
LocationServices API, as the following code snippet shows. 

// Create an instance of GoogleAPIClient. 
if (mGoogleApiClient == null) { 
    mGoogleApiClient = new 
GoogleApiClient.Builder(this) 
        .addConnectionCallbacks(this) 
        .addOnConnectionFailedListener(this) 
        .addApi(LocationServices.API) 
        .build();} 

To connect, call connect() from the activity's onStart() method. To 
disconnect, call disconnect() from the activity's onStop() method. The 
following snippet shows an example of how to use both of these methods.  



 

 

Unit 12 Locating and Sensing 
 

 

17
2 

 

 

 

protected void onStart() { 
    mGoogleApiClient.connect(); 
    super.onStart(); 
} 
protected void onStop() { 
    mGoogleApiClient.disconnect(); 
    super.onStop();} 

In the next section we will discuss about how to obtain the last known 
location of a particular Android device. 

 12.9 Getting the Last Known Location 

Use the fused location provider to retrieve the device's last known 
location. The fused location provider manages the underlying location 
technology and provides a simple API so that you can specify 
requirements at a high level, like high accuracy or low power. It also 
optimizes the device's use of battery power. 

This service requires only coarse location. Request this permission with 
the uses-permission element in your app manifest, as the following code 
snippet shows:  

 

<manifest 
xmlns:android="http://schemas.android.com/apk/res/andr
oid" 
 package="com.google.android.gms.location.sample.basic
locationsample" > 
 
<uses-permission 
android:name="android.permission.ACCESS_COARSE_LOCATIO
N"/> 
</manifest> 

 

To request the last known location, call the getLastLocation() method, 
passing it your instance of the GoogleApiClient object. Do this in the 
onConnected() callback provided by Google API Client, which is called 
when the client is ready. The following code snippet illustrates the 
request and a simple handling of the response: 

 

public class MainActivity extends ActionBarActivity 
implements 
        ConnectionCallbacks, 
OnConnectionFailedListener { 
    ... 
    @Override 
    public void onConnected(Bundle connectionHint) { 
        mLastLocation = 
LocationServices.FusedLocationApi.getLastLocation( 
                mGoogleApiClient); 
        if (mLastLocation != null) { 
            mLatitudeText.setText(String.valueOf(mLast
Location.getLatitude())); 



 

 
 Introduction to Android 

 

 17
3 

 

 

 

            mLongitudeText.setText(String.valueOf(mLas
tLocation.getLongitude())); 
        } 
    } 
} 

The getLastLocation() method returns a Location object from which you 
can retrieve the latitude and longitude coordinates of a geographic 
location.  

Now that we are aware of how to get the location details, we can discuss 
about changing location settings. Next section will discuss about 
changing location settings. 

12.10 Changing Location Settings 

To change location settings, coarse location detection is sufficient. 
Request this permission with the uses-permission element in your app 
manifest, as shown in the following example: 

<manifest 
xmlns:android="http://schemas.android.com/apk/res/andr
oid"  package="com.google.android.gms.location.sample.
locationupdates" > 
 
<uses-permission 
android:name="android.permission.ACCESS_COARSE_LOCATIO
N"/> 
</manifest> 

Set Up a Location Request 

To store parameters for requests to the fused location provider, create a 
Location Request. The parameters determine the level of accuracy for 
location requests. Here you will learn to set the update interval, fastest 
update interval, and priority, as described below: 

Update interval  

setInterval() - This method sets the rate in milliseconds at which your app 
prefers to receive location updates.  

Fastest update interval  

setFastestInterval() - This method sets the fastest rate in milliseconds at 
which your app can handle location updates. You need to set this rate 
because other apps also affect the rate at which updates are sent. The 
Google Play services location APIs send out updates at the fastest rate 
that any app has requested with setInterval(). If this rate is faster than 
your app can handle, you may encounter problems with UI flicker or data 
overflow. To prevent this, call setFastestInterval() to set an upper limit to 
the update rate.  

Priority 



 

 

Unit 12 Locating and Sensing 
 

 

17
4 

 

 

 

setPriority() - This method sets the priority of the request, which gives 
the Google Play services location services a strong hint about which 
location sources to use. The following values are supported: 

• PRIORITY_BALANCED_POWER_ACCURACY - Use this 
setting to request location precision to within a city block 
(approximately 100 meters). This is considered a coarse level 
of accuracy, and is likely to consume less power. With this 
setting, the location services are likely to use WiFi and cell 
tower positioning. 

• PRIORITY_HIGH_ACCURACY - Use this setting to 
request the most precise location possible. With this setting, 
the location services are more likely to use GPS to determine 
the location. 

• PRIORITY_LOW_POWER - Use this setting to request city-
level precision, which is an accuracy of approximately 10 
kilometers. This is considered a coarse level of accuracy, and 
is likely to consume less power. 

• PRIORITY_NO_POWER - Use this setting if you need 
negligible impact on power consumption, but want to receive 
location updates when available. With this setting, your app 
does not trigger any location updates, but receives locations 
triggered by other apps. 

• Create the location request and set the parameters as shown 
in this code sample: 

 

protected void createLocationRequest() { 
    LocationRequest mLocationRequest = new 
LocationRequest(); 
    mLocationRequest.setInterval(10000); 
    mLocationRequest.setFastestInterval(5000); 
    mLocationRequest.setPriority(LocationRequest.PRIOR
ITY_HIGH_ACCURACY); 
} 

 

Get Current Location Settings 

To do this, create a LocationSettingsRequest.Builder, and add one or 
more location requests. The following code snippet shows how to add the 
location request that was created in the previous step: 

 

LocationSettingsRequest.Builder builder = new 
LocationSettingsRequest.Builder() 
     .addLocationRequest(mLocationRequest); 

Next check whether the current location settings are 
satisfied: 

PendingResult<LocationSettingsResult> result 
=         LocationServices.SettingsApi.checkLocationSe
ttings(mGoogleClient,builder.build()); 



 

 
 Introduction to Android 

 

 17
5 

 

 

 

When the PendingResult returns, your app can check the location settings 
by looking at the status code from the LocationSettingsResult object. To 
get even more details about the the current state of the relevant location 
settings, your app can call the LocationSettingsResult object's 
getLocationSettingsStates() method. 

Prompt the User to Change Location Settings 

To determine whether the location settings are appropriate for the 
location request, check the status code from the LocationSettingsResult 
object. A status code of RESOLUTION_REQUIRED indicates that the 
settings must be changed. To prompt the user for permission to modify 
the location settings, call startResolutionForResult(Activity, int). This 
method brings up a dialog asking for the user's permission to modify 
location settings. The following code snippet shows how to check the 
location settings, and how to call startResolutionForResult(Activity, int).  

result.setResultCallback(new 
ResultCallback<LocationSettingsResult>()) { 
     @Override 
     public void onResult(LocationSettingsResult 
result) { 
         final Status status = result.getStatus(); 
         final LocationSettingsStates = 
result.getLocationSettingsStates(); 
         switch (status.getStatusCode()) { 
             case LocationSettingsStatusCodes.SUCCESS: 
                 // All location settings are 
satisfied. The client can 
                 // initialize location requests here. 
                 ... 
                 break; 
             case 
LocationSettingsStatusCodes.RESOLUTION_REQUIRED: 
                 // Location settings are not 
satisfied, but this can be fixed 
                 // by showing the user a dialog. 
                 try { 
                     // Show the dialog by calling 
startResolutionForResult(), 
                     // and check the result in 
onActivityResult(). 
                     status.startResolutionForResult( 
                         OuterClass.this, 
                         REQUEST_CHECK_SETTINGS); 
                 } catch (SendIntentException e) { 
                     // Ignore the error. 
                 } 
                 break; 
             case 
LocationSettingsStatusCodes.SETTINGS_CHANGE_UNAVAILABL
E: 
                 // Location settings are not 
satisfied. However, we have no way 



 

 

Unit 12 Locating and Sensing 
 

 

17
6 

 

 

 

                 // to fix the settings so we won't 
show the dialog. 
                 ... 
                 break; 
         } 
     } 
 }); 

Next we will discuss how to receive location updates on a device.  

12.11 Receiving Location Updates 

If your app can continuously track location, it can deliver more relevant 
information to the user. For example, if your app helps the user find their 
way while walking or driving, or if your app tracks the location of assets, 
it needs to get the location of the device at regular intervals. As well as 
the geographical location (latitude and longitude), you may want to give 
the user further information such as the bearing (horizontal direction of 
travel), altitude, or velocity of the device. This information, and more, is 
available in the Location object that your app can retrieve from the fused 
location provider. 

While you can get a device's location with getLastLocation(), a more 
direct approach is to request periodic updates from the fused location 
provider. In response, the API updates your app periodically with the best 
available location, based on the currently-available location providers 
such as WiFi and GPS (Global Positioning System). The accuracy of the 
location is determined by the providers, the location permissions you've 
requested, and the options you set in the location request. 

The starting point of location update would be to get the last known 
location of the device. This also ensures that the app has a known 
location before starting the periodic location updates. The snippets in the 
following sections assume that your app has already retrieved the last 
known location and stored it as a Location object in the global variable 
mCurrentLocation. 

For this service you require fine location detection, so that your app can 
get as precise a location as possible from the available location providers. 
Request this permission with the uses-permission element in your app 
manifest, as shown in the following example: 

 

 

 

<manifest 
xmlns:android="http://schemas.android.com/apk/res/andr
oid"    package="com.google.android.gms.location.sampl
e.locationupdates" > 
 
<uses-permission 
android:name="android.permission.ACCESS_FINE_LOCATION"
/> 
</manifest> 



 

 
 Introduction to Android 

 

 17
7 

 

 

 

Request Location Updates 

Before requesting location updates, your app must connect to location 
services and make a location request. Once a location request is in place 
you can start the regular updates by calling requestLocationUpdates(). 
Do this in the onConnected() callback provided by Google API Client, 
which is called when the client is ready. 

Depending on the form of the request, the fused location provider either 
invokes the LocationListener.onLocationChanged() callback method and 
passes it a Location object, or issues a PendingIntent that contains the 
location in its extended data. The accuracy and frequency of the updates 
are affected by the location permissions you've requested and the options 
you set in the location request object. 

This section shows you how to get the update using the LocationListener 
callback approach. Call requestLocationUpdates(), passing it your 
instance of the GoogleApiClient, the LocationRequest object, and a 
LocationListener. Define a startLocationUpdates() method, called from 
the onConnected() callback, as shown in the following code sample: 

 

@Override 
public void onConnected(Bundle connectionHint) { 
    ... 
    if (mRequestingLocationUpdates) { 
        startLocationUpdates(); 
    } 
} 
 
protected void startLocationUpdates() { 
    LocationServices.FusedLocationApi.requestLocationU
pdates( 
            mGoogleApiClient, mLocationRequest, this); 
} 

Notice that the above code snippet refers to a boolean flag, 
mRequestingLocationUpdates, used to track whether the user has turned 
location updates on or off. 

Define the Location Update Callback 

The fused location provider invokes the 
LocationListener.onLocationChanged() callback method. The incoming 
argument is a Location object containing the location's latitude and 
longitude. The following snippet shows how to implement the 
LocationListener interface and define the method, then get the timestamp 
of the location update and display the latitude, longitude and timestamp 
on your app's user interface: 

 

public class MainActivity extends ActionBarActivity 
implements 



 

 

Unit 12 Locating and Sensing 
 

 

17
8 

 

 

 

        ConnectionCallbacks, 
OnConnectionFailedListener, LocationListener { 
    ... 
    @Override 
    public void onLocationChanged(Location location) { 
        mCurrentLocation = location; 
        mLastUpdateTime = 
DateFormat.getTimeInstance().format(new Date()); 
        updateUI(); 
    } 
 
    private void updateUI() 
{        mLatitudeTextView.setText(String.valueOf(mCur
rentLocation.getLatitude()));        mLongitudeTextVie
w.setText(String.valueOf(mCurrentLocation.getLongitude
())); 
        mLastUpdateTimeTextView.setText(mLastUpdateTim
e); 
    } 
} 

Stop Location Updates 

Consider whether you want to stop the location updates when the activity 
is no longer in focus, such as when the user switches to another app or to 
a different activity in the same app. This can be handy to reduce power 
consumption, provided the app doesn't need to collect information even 
when it's running in the background. This section shows how you can 
stop the updates in the activity's onPause() method. 

To stop location updates, call removeLocationUpdates(), passing it your 
instance of the GoogleApiClient object and a LocationListener, as shown 
in the following code sample: 

 

@Override 
protected void onPause() { 
    super.onPause(); 
    stopLocationUpdates(); 
} 
 
protected void stopLocationUpdates() { 
    LocationServices.FusedLocationApi.removeLocationUp
dates( 
            mGoogleApiClient, this); 
} 

Use a boolean, mRequestingLocationUpdates, to track whether location 
updates are currently turned on. In the activity's onResume() method, 
check whether location updates are currently active, and activate them if 
not: 

 

@Override 
public void onResume() { 
    super.onResume(); 
    if (mGoogleApiClient.isConnected() && 



 

 
 Introduction to Android 

 

 17
9 

 

 

 

!mRequestingLocationUpdates) { 
        startLocationUpdates(); 
    } 
} 

 12.12 Adding Google Maps to Your App 

Google maps are the most popular method of displaying maps. You can 
easily incorporate Google maps to your app. The following link shows 
you a step by step approach to incorporate Google maps to your app.  

Activity 

Activity 12.3 

Develop a small app that uses GPS information and  your current location 
(in terms of latitude and longitude) 

 

Unit summary 

 

 

 

In this unit, first we discussed about the various sensors available with 
Android framework. We also learnt about some important sensors and 
how to use them in an application. You will have to get familiar with the 
sensor coordinate system and the best practices when you develop apps. It 
will be useful to make your applications more efficient.  

Thereafter, we discussed about how to incorporate location awareness to 
an app.  We discussed about getting the current location of a device and 
also updating a location. Also we learnt about how to incorporate Google 
maps to your app. Sensor types supported by the Android platform are at 
the end of this unit as an Annexure. 

References 

https://developer.android.com/guide/topics/sensors/sensors_overview.htm
l 

https://developer.android.com/training/location/index.html 

CC by 2.5 – Android Developer Forum (developer.android.com) 

https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/training/location/index.html


 

 

Unit 13 Connectivity and the cloud 
 

 

18
0 

 

 

 

Unit 13 

Connectivity and the cloud 

Introduction 

This unit will help you to understand the process of connecting your 
application to the world beyond the user's device. You will learn how to 
connect your application to other devices in the area and to the Internet, 
how to take backup and sync your applications data and how to deal with 
Push notifications in this unit.  

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ explain the modes of connecting an Android application with different 
devices wirelessly 

▪ write a program to connect the app with outside world 

▪ discuss the advantages of sending push notifications over polling 
method 

▪ write a program to send Push notifications from the Android 
application 

 

 

Terminology 

 

cloud: remote servers hosted on the Internet to store, 
manage, and process data 

polling: actively sampling the status of an external device 
by a client program as a synchronous activity 

connectivity: being connected to Internet 

 

 

 13.1 Connecting devices wirelessly 

First of all we will see what a wireless network is. It is any type of 
computer network that uses wireless data connections for connecting 
network nodes. Besides enabling communication with the cloud, 
Android's wireless APIs also enable communication with other 
devices on the same local network, and even devices which are not on 
a network, but are physically nearby. The addition of Network Service 
Discovery (NSD) takes this further by allowing an application to seek 
out a nearby device running services with which it can communicate. 



 

 
 Introduction to Android 

 

 18
1 

 

 

 

Integrating this functionality into your application helps you provide a 
wide range of features, such as playing games with users in the same 
room, pulling images from a networked NSD-enabled webcam, or 
remotely logging into other machines on the same network. 

     Using Network Service Discovery 

Adding Network Service Discovery (NSD) to your app allows your 
users to identify other devices on the local network that support the 
services your application requests. This is useful for a variety of peer-
to-peer applications such as file sharing or multi-player gaming. 
Android's NSD APIs simplify the effort required for you to implement 
such features. 

     Creating peer-to-peer (P2P) Connections with Wi-Fi 

The Wi-Fi P2P APIs allow applications to connect to nearby devices 
without needing to connect to a network or hotspot. Wi-Fi P2P allows 
your application to quickly find and interact with nearby devices, at a 
range beyond the capabilities of Bluetooth. Also it provides fast data 
transfer with more security than the Bluetooth.  

     Using Wi-Fi P2P for Service Discovery 

Let’ssee how to discover services published by nearby devices 
without being on the same network using Wi-Fi P2P. Using Wi-Fi 
Peer-to-Peer (P2P) Service Discovery allows you to discover the 
services of nearby devices directly without being connected to a 
network. You can also advertise the services running on your device. 
These capabilities help you communicate between apps, even when no 
local network or hotspot is available. While this set of APIs is similar 
in purpose to the Network Service Discovery APIs outlined in a 
previous section, implementing them in code is very different. 

 13.2 Performing network operations 

This section explains the basic tasks involved in connecting to the 
network, monitoring the network connection (including connection 
changes), and giving users control over an app's network usage. It also 
describes how to parse and consume XML data. 

 
These fundamental building blocks will enable you to create Android 
applications that download content and parse data efficiently, while 
minimizing network traffic. 

 

 

 



 

 

Unit 13 Connectivity and the cloud 
 

 

18
2 

 

 

 

Activity 

Activity 13.1 

State the dependencies and prerequisites when performing network 
operations. 

 

     Connecting to the Network 

To perform the network operations, your application manifest must 
include the following permissions: 

 

<uses-

permissionandroid:name="android.permission.INTERNET"/> 

<uses-

permissionandroid:name="android.permission.ACCESS_NETWORK

_STATE"/> 

     Managing Network Usage 

If your application performs a lot of network operations, you should 
provide user settings that allow users to control your app’s data habits, 

such as how often your app syncs data, whether to perform 
uploads/downloads only when on Wi-Fi, whether to use data while 
roaming, and so on. With these controls available to them, users are 
much less likely to disable your app’s access to background data when 
they approach their limits, because they can instead precisely control 
how much data your app uses. 

     Optimizing Network Data Usage 

Over the life of a smartphone, the cost of a cellular data plan can 
easily exceed the cost of the device itself. From Android 7.0 (API 
level 24), users can enable Data Saver on a device-wide basis in order 
optimize their device's data usage, and use less data. This ability is 
especially useful when roaming, near the end of the billing cycle, or 
for a small prepaid data pack. Though this has been introduced as OS 
feature with Android 7.0, various vendors have introduced their own 
data saving mechanisms like ultra-data saving mode, on other Android 
versions which support VPN. 

When a user enables Data Saver in Settings and the device is on a 
metered network, the system blocks background data usage and 
signals apps to use less data in the foreground wherever possible. 
Users can white-list specific apps to allow background metered data 
usage even when Data Saver is turned on. 

 

 



 

 
 Introduction to Android 

 

 18
3 

 

 

 

     Parsing XML Data 

Extensible Markup Language (XML) is a set of rules for encoding 
documents in machine-readable form. XML is a popular format for 
sharing data on the internet. Websites that frequently update their 
content, such as news sites or blogs, often provide an XML feed so 
that external programs can keep abreast of content changes. Uploading 
and parsing XML data is a common task for network-connected apps. 

 13.3 Considerations when transferring data 

In mobile devices battery and memory is a limited resource. For your 
app to be considered ‘good’, it should seek to limit its impact on the 
battery life of its device.  

By taking steps such as batching network requests, disabling 
background service updates when you lose connectivity, or reducing 
the rate of such updates when the battery level is low, you can ensure 
that the impact of your app on battery life is minimized, without 
compromising the user experience. 

     Optimizing Downloads for Efficient Network Access 

Using the wireless radio to transfer data is potentially one of your 
app's most significant sources of battery drain. To minimize the 
battery drain associated with network activity, it's critical that you 
understand how your connectivity model will affect the underlying 
radio hardware. It goes on to propose ways to minimize your data 
connections, use prefetching, and bundle your transfers in order to 
minimize the battery drain associated with your data transfers 

     Minimizing the effect of regular updates 

The optimal frequency of regular updates will vary based on device 
state, network connectivity, user behavior, and explicit user 
preferences. 

Optimizing battery life discusses how to build battery-efficient apps 
that modify their refresh frequency based on the state of the host 
device. That includes disabling background service updates when you 
lose connectivity and reducing the rate of updates when the battery 
level is low. 

How your refresh frequency can be varied to best mitigate the effect 
of background updates on the underlying wireless radio state machine. 

 

     Redundant downloads are redundant 

The most fundamental way to reduce your downloads is to download 
only what you need. In terms of data, that means implementing REST 
APIs that allow you to specify query criteria that limit the returned 
data by using parameters such as the time of your last update. 



 

 

Unit 13 Connectivity and the cloud 
 

 

18
4 

 

 

 

Similarly, when downloading images, it is a good practice to reduce 
the size of the images server-side, rather than downloading full-sized 
images that are reduced on the client. 

Modifying your download patterns based on the connectivity 
Type 

When it comes to impact on battery life, not all connection types are 
created equal. Not only does the Wi-Fi radio use significantly less 
battery than its wireless radio counterparts, but the radios used in 
different wireless radio technologies have different battery 
implications 

13.4 Syncing to the cloud with information delivery models 

The Wearable Data Layer API, which is part of Google Play services, 
provides a communication channel for your handheld and wearable 
apps. The API consists of a set of data objects that the system can 
send and synchronize over the wire and listeners that notify your apps 
of important events with the data layer 

Video – V11: Connectivity and the cloud 

In this video you will be learning how to integrate cloud based 
services to your application. 

 
URL: https://tinyurl.com/y86wfhhw 

 

 

 

 

13.5 Push notification 

A notification is a message you can display to the user outside of your 
application's normal UI. When you tell the system to issue a 
notification, it first appears as an icon in the notification area. To see 
the details of the notification, the user opens the notification drawer. 
Both the notification area and the notification drawer are system-
controlled areas that the user can view at any time. 

Polling happens when the phone goes to the server with a certain 
interval and asks if there are any messages to process. Basically there 
are two ways to get messages to the phone:  

1. Push messages (the server contacts the phone and tells it there are 
messages waiting)  

2. Polling service (the phone contacts the server and ask for messages) 

      

 

https://tinyurl.com/y86wfhhw


 

 
 Introduction to Android 

 

 18
5 

 

 

 

Creating a notification 

You can specify the UI information and actions for a notification in a 
NotificationCompat.Builder object. To create the notification you 
cancall NotificationCompat.Builder.build(), which returns a 
Notification object containing your specifications. To issue the 
notification, you pass the Notification object to the system by calling 
NotificationManager.notify() 

The following snippet illustrates a simple notification that specifies an 
activity to open when the user clicks the notification. Notice that the 
code creates a TaskStackBuilder object and uses it to create the 
PendingIntent for the action. This pattern is explained in more detail 
in the section Preserving Navigation when Starting an Activity: 

NotificationCompat.Builder mBuilder = 

        newNotificationCompat.Builder(this) 

        .setSmallIcon(R.drawable.notification_icon) 

        .setContentTitle("My notification") 

        .setContentText("Hello World!"); 

// Creates an explicit intent for an Activity in your app 
Intent resultIntent 

=newIntent(this,ResultActivity.class); 

// The stack builder object will contain an artificial back //stack 

for the started Activity. 

// This ensures that navigating backward from the Activity leads 

//out of your application to the Home //screen. 
TaskStackBuilder stackBuilder 

=TaskStackBuilder.create(this); 

// Adds the back stack for the Intent (but not the Intent //itself) 
stackBuilder.addParentStack(ResultActivity.class); 

// Adds the Intent that starts the Activity to the top of the 

//stack 
stackBuilder.addNextIntent(resultIntent); 

PendingIntent resultPendingIntent = 

        stackBuilder.getPendingIntent( 

            0, 

            PendingIntent.FLAG_UPDATE_CURRENT 

        ); 

mBuilder.setContentIntent(resultPendingIntent); 

NotificationManager mNotificationManager = 

    (NotificationManager) 

getSystemService(Context.NOTIFICATION_SERVICE); 

// mId allows you to update the notification later on. 
mNotificationManager.notify(mId, mBuilder.build()); 



 

 

Unit 13 Connectivity and the cloud 
 

 

18
6 

 

 

 

    

  Google Cloud Messaging as an alternative to polling 

Every time an app polls a server to check if an update is required, you 
activate the wireless radio, drawing power unnecessarily, for up to 20 
seconds on a typical 3G connection. 

Compared to polling, where your app must regularly ping the server to 
query for new data, Google cloud messaging model allows your app to 
create a new connection only when it knows there is data to download. 

The result is a reduction in unnecessary connections, and a reduced 
latency for updated data within your application. 

Google Cloud Messaging for Android (GCM) is a lightweight 
mechanism used to transmit data from a server to a particular app 
instance. Using GCM, your server can notify your app running on a 
particular device that there is new data available for it. 

GCM is implemented using a persistent TCP/IP connection. While it's 
possible to implement your own push service, it's best practice to use 
GCM. This minimizes the number of persistent connections and 
allows the platform to optimize bandwidth and minimize the 
associated impact on battery life 

Google Cloud Messaging (GCM) is a free service that enables 
developers to send messages between servers and client apps. This 
includes downstream messages from servers to client apps, and 
upstream messages from client apps to servers. 

For example, a lightweight downstream message could inform a client 
app that there is new data to be fetched from the server, as in the case 
of a "new email" notification. For use cases such as instant messaging, 
a GCM message can transfer up to 4kb of payload to the client app. 
The GCM service handles all aspects of queuing of messages and 
delivery to and from the target client app. 

A GCM implementation includes a Google connection server, an app 
server in your environment that interacts with the connection server 
via HTTP or XMPP protocol, and a client app. 

 

Activity 

Activity 13.2 

Select a commonly used Android application and identify how the 
application connect with other devices, with internet, how the application 
syncs and backup data. 

 

 



 

 
 Introduction to Android 

 

 18
7 

 

 

 

Unit summary 

 

 

Summary 

This unit provided you an insight of how to connect different devices to 
your application wirelessly. Furthermore how to transfer data without 
draining the battery and how to get started with syncing to the cloud 
using information delivery models were discussed. At the end of the unit 
the drawbacks of using polling methods over push notifications and the 
Android code snippets used for sending push notifications were 
explained. 

 

 

 

 

 

 

 

 

 

 

  



 

 

Unit 14 Publish to Android Market 
 

 

18
8 

 

 

 

Unit 14 

Publish to Android Market 

Introduction 

By following this unit you will gain theoretical knowledge on the revenue 
and distribution models, process of launching an Android application in a 
distributed environment. Knowledge gained from this unit will help you 
to make an informed choice of the business models to cater to specific 
requirements when launching a developed Android application to the 
market. 

The provided video will demonstrate you how to publish an Android 
application to the Google Play.  

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ translate the appropriate distribution model to reach target audience 

▪ describe available business models 

▪ select appropriate business models for the applications 

▪ demonstrate how to deploy the developed application in Android 
Market 

 

 

Terminology 

 

Localization: the process of making something local in 
character or restricting it to a particular place 

 14.1 How can you obtain an Android application? 

As you already learnt in the previous units, Android mobile applications 
are software programs that may be installed on portable computing 
devices such as smartphones, tablets, some digital set-top boxes, laptops 
etc. Mobile applications market is the place where the buyers 
(consumers/users) and sellers (app developers) of mobile applications 
meet. These mobile application markets are dedicated retail platforms 
known as AppStores which can be accessible through the consumer’s 
device. The main objective of an AppStore is to serve as a host to initially 



 

 
 Introduction to Android 

 

 18
9 

 

 

 

source online to distribute to potential users through a data connection 
and accessing device.  

An end-user can obtain an Android application in two main ways. 
Applications may be pre-installed or downloaded on-demand. Pre-
installed mobile applications are selected by device manufacturers and 
usually include the following. 

• utilities (for example, calendars, alarm clocks, camera apps) 

• services (for example, weather apps, Google maps, a compass, 
world clock) 

• entertainment (for example, music, video, games) 

• communications applications (for example, chat applications) 

Mobile applications may be downloaded and installed by consumers in 
several ways:  

• Via the device - end-user can directly access the device 
manufacturer’s app store through a menu on the device, and 

download and install a mobile application. Access may be 
enabled through 3G or Wi fi networks (in Wifi-enabled devices). 

• Via the Internet directly onto the mobile device - the end-user can 
access the manufacturer’s app store via the web browser on 

his/her device. 

• Via the Internet and transfer to the mobile device - the end-user 
can access the manufacturer’s app store via the web browser on a 

personal computer and then transfer over Bluetooth or an external 
memory to install in the mobile device. 

 14.2 App Stores 

Mobile applications are commonly made available through aggregators 
with online stores. Mobile applications aggregators are not new to the 
communications industry. Online stores offering mobile phone ringtones, 
themes and other applications have existed since the late 1990s. 

App stores may be categorized as: 

Device manufacturers—including Apple’s App Store, Nokia’s Ovi, and 

Blackberry’s App World. These stores can be used only by consumers 

with the appropriate manufacturer’s device and proprietary software. 

Operating system developer—including Android Market and Microsoft 
Windows Mobile. These stores can be accessed by consumers with 
devices from multiple handset manufacturers via the proprietary 
operating system software (OS). For example, Android mobile 
applications can be used on Motorola, HTC and Samsung devices etc. 
which have Android Operating system. 

Mobile network operator—including Telstra, Verizon and Optus. These 
stores can only be accessed by consumers with service contracts with the 



 

 

Unit 14 Publish to Android Market 
 

 

19
0 

 

 

 

network operator. Consumers can use multiple handset brands to access 
these stores. 

Independent—including app stores operated as independent commercial 
concerns, or by developers such as GetJar and Mobango. Access to these 
stores is not dependent on the brand of device used, service provider or 
proprietary software. 

Activity 

Activity 14.1 

Based on the discussion in Sections 14.1 and 14.2, compare the AppStore 
classifications for publishing the following two applications. 

AppA - health diary application to update calorie intake, number of hours 
of exercise etc for Hutch mobile users. 

AppB - advanced colouring app which can edit and use existing art for 
children 

 

14.3 Revenue Models 

Revenue models are different ways that entrepreneurs can earn money 
from their mobile applications. Under this topic we will be explaining 
three revenue models: Free Model, Paid model and Paymium model.  

Free Model      

Free model is also referred to as freemium model. In this model, users 
don’t pay to download or use an application. The main advantage of 

removing the barrier of price increases the likelihood that users in the 
target market will download and try. This initiation can help increase 
awareness for the application and grow the distribution among the target 
user base.     

The main source of revenue for freemium model is through 
advertisements. Applications can display advertisements and in return 
generate “ad revenue”. It is also important to select appropriate 

advertisements to suit the application and its target market. Inappropriate 
advertisements can reduce the interactions with the users and their 
retention to continue usage.  

 

Paid Model 

In this model, users pay once to download an application. Then, use the 
functionalities provided by that application without any further payments. 
The paid model is suitable for users who prefer to pay once to get the full 
application experience, without in-app purchases. We will discuss the in-
app model in the next section. Often the application developers need to 
pay careful attention to include premium experiences through attractive 
design and functionality for applications intend to be distributed using 



 

 
 Introduction to Android 

 

 19
1 

 

 

 

paid model. Since there is only a one-time payment it is important to 
drive the marketing strategy to acquire more users. It is advisable that the 
developers make sure that their app’s title, icon, description, preview, 
screenshots, and other marketing communications effectively showcase 
the premium nature of the application.    

Paymium Model 

Paymium model is essentially a combination of the paid and freemium 
models. Users pay to download the application and have the option to buy 
additional features, content, or services as they continue to use the 
application. Paymium model is suitable for users who would like to 
engage interacting with the application step-by-step depending on their 
requirements. Unlike in the paid model, this model allows a user to decide 
whether to acquire more features as and when needed rather than to pay a 
hefty price. In-app purchases can reduce the chances of disappointments 
in paid model where the user is not fully satisfied with the functionalities 
and features offered by an application. Another important aspect is the 
developers have the flexibility to add more customizable features. 

Offering Subscriptions 

This model offer an easy experience for digital subscriptions. In-app 
purchase APIs provide a simple, standardized way to implement auto-
renewable and non-renewing subscriptions to content or services. With 
in-app purchase subscriptions, it is possible to the price and duration of 
subscriptions. Duration of subscriptions may be seven days, one month, 
two months, three months, six months, or one year. Often AppStores 
allow the users to manage the subscription of their applications. For 
example, in Apple AppStore a user can manage the subscriptions through 
the Apple user ID account. 

Auto-Renewable Subscriptions: This subscription type gives users 
access to content that is regularly updated. At the end of each 
subscription duration, the subscription will renew automatically until a 
user chooses to turn off auto-renewal. Often free trials are offered for 
such applications using this business model. The length of the 
subscription determines how long the free trial can be. For example, for a 
monthly subscription you can offer users a 7-day or 1-month free trial. 
When users sign up for a subscription with a free trial, their subscription 
will begin immediately but they won’t be billed until the free trial period 

is over. They will then continue to be billed on a recurring basis, unless 
the users turn off auto-renewal. 

Non-Renewing Subscriptions: This subscription type give users access 
to content or services for a limited duration Non-renewing subscriptions 
require users to renew each time a subscription ends and may notify them 
when subscriptions is due to expire with a prompt to purchase a new 
subscription. Often free trials are offered for such applications using this 
business model. When users sign up for a subscription they won’t be 



 

 

Unit 14 Publish to Android Market 
 

 

19
2 

 

 

 

billed until the free trial period is over. Then the subscription will be 
billed to a pre-defined period and not on a recurring basis as there is no 
auto-renewal. 

Activity 

Activity 14.2 

Identify the revenue model for the Equalizer Android application. Include 
the knowledge gained from the previous sections.  

 

14.4 Google Play 
The Google Play Store or Google Play (originally as the Android Market) 
is a digital distribution service operated and developed by Google. It 
serves as the official app store for the Android operating system. 
GooglePlay allows users to browse and download applications developed 
with the Android SDK and published through Google. In Android devices, 
Google Play Store is an official pre-installed application. This pre-
installed application provides access to the Google Play store for users to 
browse and download music, books, magazines, movies, television 
programs, and other applications from Google Play.  
 
The Devices segment of Google Play is not accessible through the Play 
Store. The Play Store application is not open source. Only Android 
devices that comply with Google's compatibility requirements may install 
and access Google's closed-source Play Store application, subject to 
entering into a free-of-charge licensing agreement with Google.  

Applications are available through Google Play use freemium or paid 
business models. They can be downloaded directly to an Android or 
Google TV device through the Play Store mobile app, or by deploying the 
application to a device from the Google Play website. Many applications 
can be targeted to specific users based on a particular hardware attribute 
of their device, such as a motion sensor (for motion-dependent games) or 
a front-facing camera (for online video calling). Such specific application 
are allowed to download onto devices with appropriate in-built hardware 
or sufficient capabilities. 

14.5 Process of Publishing an Android Application 

Once the application is developed, the next process is to make it available 
for the users to download and use it. To reliably distribute an Android 
application for the users to download, an AppStore is required. The steps 
of the publishing process can be summarized as follows.  

1. Select an appropriate AppStore 

https://en.wikipedia.org/wiki/Digital_distribution
https://en.wikipedia.org/wiki/App_store
https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/Android_SDK
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Google_TV
https://en.wikipedia.org/wiki/Google_TV
https://en.wikipedia.org/wiki/Mobile_app
https://en.wikipedia.org/wiki/Software_deployment


 

 
 Introduction to Android 

 

 19
3 

 

 

 

2. Read and understand the policies and agreements of the selected 
AppStore 

3. Quality test 

4. Determine the content rating for the Android application 

5. Determine the country (or the countries) to distribute 

6. Confirm the overall size, platform and the screen compatibility 
ranges 

7. Decide the revenue model 

8. Decide how to bill or collect the revenue (e.g. In-App or using 
Google Pay) 

9. Set the price (or prices) 

10. Localization 

11. Prepare promotional graphics, videos and screencasts 

12. Build and upload 

13. Plan for Beta release 

14. Complete AppStore listing 

15. Support users after launch 

 

Video – V12: Publish to Android Market 
 

This video shows the steps to follow when building your 
application to release and releasing the application to users.  
URL: https://tinyurl.com/Publish-to-Android-Market 
 
 

 
 
 

Activity 

Activity 14.3 

Based on the content covered in Section 14.3, 14.4 and 14.5, in your 
opinion what are the most significant steps that can have a significant 
impact (in terms of popularity and revenue loss/gain) if the revenue 
model is changed during the publishing process of the Android 
application. 

https://tinyurl.com/Publish-to-Android-Market


 

 

Unit 14 Publish to Android Market 
 

 

19
4 

 

 

 

Unit summary 

 

 

 

This unit covered the topics on revenue and distribution models, process 
of launching an Android application in a distributed environment. To 
further enhance your understanding on these topics activities and a 
supplementary video were provided. 

References 

1. Australian Communications and Media Authority, “Emerging 

Business Models in the Digital Economy - The Mobile Applications 
Market”, May 2011, downloaded from:   
http://www.acma.gov.au/webwr/_assets/main/lib310665/emerging_busin
ess_models.pdf. 
2. Nielsen, "Smartphones: So Many Apps, So  Much Time," July 2014. 
3.“Choosing a Business Model”, downloaded  from: 
https://developer.apple.com/app-store/business-
models/ 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.acma.gov.au/webwr/_assets/main/lib310665/emerging_business_models.pdf
http://www.acma.gov.au/webwr/_assets/main/lib310665/emerging_business_models.pdf
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
https://developer.apple.com/app-store/business-models/
https://developer.apple.com/app-store/business-models/


 

 
 Introduction to Android 

 

 19
5 

 

 

 

Unit 15 

Performance 

Introduction 

In this unit you will learn to analyze the performance of an Android 
application. First you will identify and use tools to visualize performance 
which would enable you to analyze performance in various aspects of an 
Android application. Then you will learn how to improve the 
performance by optimizing memory usage and minimizing the power 
consumption by selecting appropriate techniques. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ identify tools to visualize performance of an Android app 

▪ analyse performance of a developed application to identify the 
drawbacks 

▪ apply techniques to reduce memory usage when programming for 
Android 

▪ analyse battery life and apply techniques to optimize battery usage 

 

 

Terminology 

 

profiling: 

 

optimize: 

analyse performance using a tool 

 

make the most effective use of something 

 

 

 

15.1  Performance Profiling 

With Android applications, it is possible to perform various things on 
devices such as running tasks in background, playing music or videos, or 
connecting with different networks like, Wi-Fi, 4G, and Bluetooth. So 
applications running in the device may consume its resources in many 
ways. For example displaying pixels on the screen involves four primary 
pieces of hardware. In simple terms the Central Processing Unit (CPU) 
computes display lists, the Graphical Processing Unit (GPU) renders 



 

 

Unit 15 Performance 
 

 

19
6 

 

 

 

images to the display, the memory stores images and data, and the battery 
provides electrical power. Each of these pieces of hardware has 
constraints; pushing or exceeding those constraints causes your app to be 
slow, have bad display performance, or exhaust the battery. Performance 
profiling means investigating and analyzing a mobile application’s 
runtime behavior to decide how to optimize the performance the 
programs involved. In the next section, we will discuss a popular 
profiling tool and its sub-tools. 

 
Performance Profiling Tools 

To discover what causes your specific performance problems, you need 
to investigate in depth, i.e. use tools to collect data about your app 
execution behavior, organize that data in lists and graphics, and analyze 
what you see. Your mobile device together with Android Studio provides 
profiling tools to record and visualize the rendering, do computations, 
analyze memory and battery usage of your app. Android Monitor, which 
is introduced below is one such tool. 

 15.2 Android Monitor Overview 

Android Monitor provides various sub-tools that you can use to profile 
the performance of an app so that you can optimize, debug, and improve 
them. It lets you monitor the following aspects of your apps from a 
hardware device or the Android Emulator:  

● Log messages, either system or user defined  
● Memory, CPU, and GPU usage  
● Network traffic (hardware device only)  

It lets you capture data as your app runs and stores it in a file that you can 
analyze in various viewers. You can also capture screenshots and videos 
of your app as it runs. 

Android Monitor has a main window that contains performance 
monitors such as logcat, Memory, CPU, GPU, and Network Monitors. 
From this window, you can select a device and app process to work with, 
terminate an app, collect dumpsys system information, and create 
screenshots and videos of the running app. dumpsys is an Android tool 
that runs on the device and dumps information about the status of system 
services. 

Usage of these performance monitors will be described in the screen cast 
on ‘Performance monitors’.  A brief description of each performance 
monitor with a screen shot is given below for you to see what it looks 
like.  

Those screen shots are taken from the weather app shown in Figure 15.1 
below. 

 

 

https://developer.android.com/tools/devices/emulator.html
https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/tools/help/android-monitor.html


 

 
 Introduction to Android 

 

 19
7 

 

 

 

 

 

Figure 15. 1 weather app  

 

 

Video -V13: Performance Profiling  

 

In this video you will see how different profiling tools in Android 
Monitor are used.  These tools are, CPU monitor, GPU monitor, memory 
monitor, network monitor and logcat. 

URL: https://tinyurl.com/Performance-Profiling 

 

https://tinyurl.com/Performance-Profiling


 

 

Unit 15 Performance 
 

 

19
8 

 

 

 

Figure 15.2 given below is a screen shot from logcat. 

Figure 15.2 Logcat 

 

Memory Monitor – We use the Memory Monitor an in figure 15.3 to 
evaluate memory usage and find de-allocated objects, locate memory 
leaks, and track the amount of memory that the connected device is using. 

Figure 15.3 Android Monitor – Memory Footprint by running Weather 
app 

 

 

https://developer.android.com/studio/profile/am-memory.html
https://developer.android.com/studio/profile/am-memory.html
https://developer.android.com/studio/profile/am-memory.html


 

 
 Introduction to Android 

 

 19
9 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applications Memory Usage (kB): 
 
Uptime: 269104 Realtime: 269104 
 
  ** MEMINFO in pid 4248 [com.example.android.sunshine.app] ** 
 
Pss  Private  Private  Swapped     Heap     HeapHeap 
 
                 Total    Dirty    Clean    Dirty     Size    Alloc     Free 
 
                ------   ------   ------   ------   ------   ------   ------ 
 
  Native Heap     3361     3276        0        0    14336    13865      470 
 
Dalvik Heap     1634     1524        0        0     3684     2920      764 
 
Dalvik Other      341      288        0        0                            
 
        Stack      120      120        0        0                            
 
       Cursor        4        4        0        0                            
 
Ashmem        2        0        0        0                            
 
    Other dev        4        0        4        0                            
 
     .so mmap     1109      300        0        0                            
 
    .apkmmap      168        0        8        0                            
 
    .ttfmmap      113        0       72        0                            
 
    .dexmmap     2112        4     2108        0                            
 
    .oat mmap     1057        0      152        0                            
 
    .art mmap      834      436        0        0                            
 
   Other mmap       38        8        4        0                            
 
      Unknown      169      168        0        0                            
 
        TOTAL    11066     6128     2348        0    18020    16785     1234 
 
     
App Summary 
 
Pss(KB) 
                       ------ 
 
           Java Heap:     1960 
 
         Native Heap:     3276 
 
                Code:     2644 
 
               Stack:      120 
 
            Graphics:        0 
 
       Private Other:      476 
 
              System:     2590 
 
 
               TOTAL:    11066      TOTAL SWAP (KB):        0 
 
     
 
 Objects 
 
               Views:       61         ViewRootImpl:        1 
 
AppContexts:        2           Activities:        1 
 
              Assets:        2        AssetManagers:        2 
 
       Local Binders:       11        Proxy Binders:       15 
 



 

 

Unit 15 Performance 
 

 

20
0 

 

 

 

CPU Monitor – As in Figure 15.4,  CPU Monitor can be used to display 
CPU usage in real time and the percentage of total CPU time (including 

all cores) used in user and kernel mode. 

 

Figure 15.4 CPU Monitor 

 

GPU Monitor – You can use the GPU Monitor as in figure 15.5 for a 
visual representation of how much time it takes to render the frames of a 
UI window. This information can be used to optimize the code that 
displays graphics and conserve memory. 

 

Figure 15.5 GPU monitor 

https://developer.android.com/studio/profile/am-cpu.html
https://developer.android.com/studio/profile/am-cpu.html
https://developer.android.com/studio/profile/am-cpu.html
https://developer.android.com/studio/profile/am-gpu.html
https://developer.android.com/studio/profile/am-gpu.html
https://developer.android.com/studio/profile/am-gpu.html
https://developer.android.com/studio/profile/am-gpu.html


 

 
 Introduction to Android 

 

 20
1 

 

 

 

 

Figure 15.6 Android  

Activity 

Activity 15.1 
What are the sub-tools provided by the Android Monitor to analyse the 
performance of an app? 

 

Data Analysis 

Android Monitor also lets you capture various types of data about your 
app while it is running and stores it in a file, which you can access later. 
It lists these files in the Captures window and you may observe how it 
works in the screen cast provided for this unit. 

15.3 Android Monitor Basics 

In this section you will be guided how to use the Android Monitor step by 
step. The screen cast on Android Monitor Basics will demonstrate this 
activity. 

Android Monitor is integrated into the Android Studio main window:  

● To display Android Monitor, click , which 
by default is at the bottom of the main window.  

● To hide Android Monitor, click again.  
● Or select View>Tool Windows>Android Monitor. 

Note: If you don't see the sidebar buttons, you can display them by 
selecting View>Tool Buttons.  

A screen shot of Android Monitor is given below in Figure 15.7: 



 

 

Unit 15 Performance 
 

 

20
2 

 

 

 

 
Figure 15.7 Android monitor 

 

Before start using Android Monitor, you need to set up the environment, 
as well as the hardware device or emulator. All of the monitors require 
the following:  

● If you want to run your app on a hardware device (as opposed to 
the emulator), connect it to the USB port. Make sure your 
development computer detects your device, which often happens 
automatically when you connect it.  

● Enable ADB integration by selecting Tools>Android>Enable 
ADB Integration. Enable ADB Integration should have a 
check mark next to it in the menu to indicate it's enabled.  

All but the logcat Monitor have these additional requirements:  

● EnableUSB debugging in Developer Options on the device or 
emulator.  

In your app, set the debuggable property to true in the manifest or 
build.gradle file (it’s initially set by default).  

The GPU Monitor has this requirement as well:  

● For Android 5.0 (API level 21) and Android 5.1 (API level 22), 
in Developer Options on the device or emulator, set Profile 
GPU rendering to ‘In adb shell dumpsysgfxinfo’.  

The Network Monitor and the Video Capture tool work with a hardware 
device only, not with the emulator.  

15.4 Profiling a Running App in Android Monitor 

After you have met the prerequisites and connected a hardware device, 
you are ready to profile an app in Android Monitor. To start; 

1. Open an app project and run the app on a device or emulator.  
2. Display Android Monitor and click the tab for the monitor you 

want to view.  
3. follow the instructions about using the monitor:  

o logcat Monitor 

https://developer.android.com/tools/device.html#setting-up
https://developer.android.com/tools/device.html#device-developer-options
https://developer.android.com/tools/device.html#device-developer-options
https://developer.android.com/tools/building/building-studio.html#RunningApp
https://developer.android.com/tools/help/am-logcat.html


 

 
 Introduction to Android 

 

 20
3 

 

 

 

o Memory Monitor 
o CPU Monitor 
o GPU Monitor 
o Network Monitor 

Switching between Devices and Apps  

By default, Android Monitor displays data for your most recently run 
app. You can switch to another device and app as needed. In addition to 
currently running apps, you can view information about apps that are no 
longer running so you can continue to see any information about them 
that you gathered previously.  

At the top of the Android Monitor main window, there are two menus 
listing devices and processes. To switch to another device, process, or 
both:  

1. Select the device or emulator.  

The Device menu lists the devices and emulators that are running 
or have run during your current unit. There are various status 
messages that can appear in the Device menu:  

o DISCONNECTED - You closed an emulator or 
unplugged a device from the computer.  

o UNAUTHORIZED - A device needs you to accept the 
incoming computer connection. For example, if the 
connected device displays an Allow USB Debugging 
dialog, click OK to allow the connection.  

o OFFLINE - Android Monitor can’t communicate with a 

device, even though it has detected that device.  
 

2. Select the process.  

The Process menu lists the processes that are running or have run 
during your current unit. If a process is no longer running, the 
menu displays status of DEAD.  

Terminating an App and removing it from a Device 

To stop an app you have run from Android Studio, select the device and 
the process in the Android Monitor menus and click ‘Terminate 
Application’. The process status changes to DEAD in the Processes 
menu. The emulator or device may continue to run, but the app closes. 
Any running monitors in Android Monitor would stop.  

To remove an app from a device you use for development, use the normal 
uninstall procedure on the device.  

If you run a new version of an app from Android Studio that’s been 
already installed on a hardware device, the device displays an Application 

https://developer.android.com/tools/help/am-memory.html
https://developer.android.com/tools/help/am-cpu.html
https://developer.android.com/tools/help/am-gpu.html
https://developer.android.com/tools/help/am-network.html
https://developer.android.com/studio/profile/am-basics.html#switching
https://developer.android.com/studio/profile/am-basics.html#switching


 

 

Unit 15 Performance 
 

 

20
4 

 

 

 

Installation Failed dialog. Click OK to install the new version of the app.  

From the Android Monitor main window, you can also do the following:  

● Examine dumpsys system information.  
● Take a screen capture of the device.  
● Record a video from the screen. 

15.5 How Android Manages Memory 

Random-access memory (RAM) is a valuable resource in any software 
development environment, but it is even more valuable on a mobile 
operating system where physical memory is often constrained. Although 
Android's Dalvik virtual machine or Android Runtime (Introduced later, 
with KitKat) performs routine garbage collection, this doesnot allow you 
to ignore when and where your app allocates and releases memory. 
Techniques such as sharing memory, allocating and reclaiming app 
memory, restricting app memory and switching apps have been 
implemented in Android. In this course these techniques are not discussed 
in detail. 

You may read the following pages found in Android Developer Forum 
https://developer.android.com/training/articles/memory.html to 
understand how Android manages app processes and memory allocation, 
and how you can proactively reduce memory usage while developing for 
Android.  

You should consider RAM constraints throughout all phases of 
development, especially during app design. There are many ways you can 
design and write code that lead to more efficient results, through 
aggregation of the same techniques applied over and over. 

Here are few techniques that you can apply while designing and 
implementing your app to make it more memory efficient. 

Use services sparingly 

If your app needs a service to perform work in the background, do not 
keep it running unless it is actively performing a job. Bbe careful to never 
leak your service by failing to stop it when its work is over. 

Release memory when your user interface becomes hidden 

When the user navigates to a different app and your user interface (UI) is 
no longer visible, you should release any resources that are used by only 
your UI. Releasing UI resources at this time can significantly increase the 
system's capacity for cached processes, which has a direct impact on the 
quality of the user experience. 

Release memory as memory becomes tight 

During any stage of your app's lifecycle, the onTrimMemory() callback 
also tells you when the overall device memory is getting low. You should 
respond by further releasing resources based on the memory levels 
delivered by onTrimMemory(). 

Because the onTrimMemory() callback was added in API level 14, you 
can use the onLowMemory()callback as a fallback for older versions. 

https://developer.android.com/tools/help/am-sysinfo.html
https://developer.android.com/tools/help/am-screenshot.html
https://developer.android.com/tools/help/am-video.html
https://developer.android.com/training/articles/memory.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/reference/android/content/ComponentCallbacks2.html#onTrimMemory%28int%29
https://developer.android.com/reference/android/content/ComponentCallbacks2.html#onTrimMemory%28int%29
https://developer.android.com/reference/android/content/ComponentCallbacks2.html#onTrimMemory%28int%29
https://developer.android.com/reference/android/content/ComponentCallbacks.html#onLowMemory%28%29


 

 
 Introduction to Android 

 

 20
5 

 

 

 

Check how much memory you should use 

As mentioned earlier, each Android-powered device has a different 
amount of RAM available to the system and thus provides a different 
heap limit for each app. You can call getMemoryClass() to get an 
estimate of your app's available heap in megabytes. If your app tries to 
allocate more memory than is available here, it will receive an 
OutOfMemoryError. 

Large heap size is not the same on all devices so that when running on 
devices that have limited RAM, the large heap size may be exactly the 
same as the regular heap size. So even if you request the large heap size, 
you should call getMemoryClass() to check the regular heap size and 
strive to stay below that limit always. 

Avoid wasting memory with bitmaps 

When you load a bitmap, keep it in RAM only at the resolution you need 
for the current device's screen. Scale it down if the original bitmap is a 
higher resolution. You may keep in mind that an increase in bitmap 
resolution results in a corresponding in-memory needed, because both the 
X and Y dimension increase. 

Use optimized data containers 

Take advantage of optimized containers in the Android framework, such 
as SparseArray, SparseBooleanArray, and LongSparseArray. The generic 
HashMapimplementation can be quite memory inefficient because it 
needs a separate entry object for every mapping.  

Be aware of memory overhead 

Be knowledgeable about the cost and overhead of the language and 
libraries you are using, and keep this information in mind when you 
design your app, from start to finish. Often, things on the surface that 
look trivial may in fact have a large amount of overhead.  

Be careful with code abstractions 

Often, developers use abstractions simply as a "good programming 
practice," because abstractions can improve code flexibility and 
maintenance. However, generally they require a fair amount more code 
that needs to be executed, requiring more time and more RAM for that 
code to be mapped into memory. Soyou may avoid abstractions if they 
are not giving a significant benefit. 

Be careful about using external libraries 

External library code is often not written  for mobile environments and 
can be inefficient when used for work on a mobile client. At the very 
least, when you decide to use an external library, you should assume you 
are taking on a significant porting and maintenance burden to optimize 
the library for mobile. Plan for that work up-front and analyse the library 
in terms of code size and RAM footprint before deciding to use it at all. 

https://developer.android.com/reference/android/app/ActivityManager.html#getMemoryClass%28%29
https://developer.android.com/reference/java/lang/OutOfMemoryError.html
https://developer.android.com/reference/android/app/ActivityManager.html#getMemoryClass%28%29
https://developer.android.com/reference/android/util/SparseArray.html
https://developer.android.com/reference/android/util/SparseBooleanArray.html
https://developer.android.com/reference/android/support/v4/util/LongSparseArray.html
https://developer.android.com/reference/java/util/HashMap.html


 

 

Unit 15 Performance 
 

 

20
6 

 

 

 

Optimize overall performance 

Some of the actions can be taken to optimize your app's performance in 
various ways to improve its responsiveness and battery efficiency are 
given below. 

● Avoid creating unnecessary objects 
● Prefer static over virtual 
● Use static final for constants 
● Avoid internal getters/setters 
● Use enhanced for loop syntax 
● Consider package instead of private access with private  

              inner classes 
● Avoid using floating-point 
● Use native methods carefully 
● measure your existing performance 

 

Further details on implementing these techniques are given in the 
Android Developer Forum in https://developer.android.com/training/best-
performance.html 

Use zipalign on your final Android Application Package (APK) 

Android Application Package (APK) is the packaging format used by 
Android operating system in distribution and installation of Android 
apps. Zipalignis a tool that optimize the way an application is packaged. 

If you do any post-processing of an APK generated by a build system, 
then you must run zipalign on it to have it re-aligned. Failing to do so can 
cause your app to require significantly more RAM, because things like 
resources can no longer be mapped from the APK. 

Use multiple processes 

If it is appropriate for your app, an advanced technique that may help you 
manage your app's memory is dividing components of your app into 
multiple processes. This technique must always be used carefully and 
most apps should not run multiple processes, as it can easily 
increase—rather than decrease—your RAM footprint if done incorrectly. 
It is primarily useful to apps that may run significant work in the 
background as well as the foreground and can manage those operations 
separately. 

 

 

Activity 

Activity 15.2 

List down what techniques you used to optimize memory in the app you 
developed. Briefly describe them in the on-line discussion forum under 
managing app memory. You should give feedback to what your peers 
have written and also invite them to give feedback to you. 

https://developer.android.com/tools/help/zipalign.html


 

 
 Introduction to Android 

 

 20
7 

 

 

 

 

15.6 Battery Analysis 

The battery-life impact of performing application updates depends on the 
battery level and charging state of the device. The impact of performing 
updates while the device is charging over AC is negligible, so in most 
cases you can maximize your refresh rate whenever the device is 
connected to a wall charger. Conversely, if the device is discharging, 
reducing your update rate helps prolong the battery life. 

Similarly, you can check the battery charge level, potentially reducing the 
frequency of or even stopping the updates when the battery charge is 
nearly exhausted. 

Battery Historian Walkthrough 

This walkthrough shows the basic usage and workflow for the 
Batterystats tool and the Battmery Historian script. 

Batterystats collects battery data from your device, and Battery Historian 
converts that data into an HTML visualization that you can view in your 
Browser. Batterystats is part of the Android framework, and Battery 
Historian script is open-sourced and available on GitHub at 
https://github.com/google/battery-historian. 

It is good for: 

● Showing you where and how processes are drawing current from 
the battery and 

● Identifying tasks in your app that could be deferred or even 
removed to improve battery life. 

Video – V14: Battery Analysis 

 

This video shows you how to analyse battery power and generate a 
report.   

URL: https://tinyurl.com/ya2lsmko 

 

 

 

 

 

 

 

https://github.com/google/battery-historian
https://tinyurl.com/ya2lsmko


 

 

Unit 15 Performance 
 

 

20
8 

 

 

 

Battery Historian Charts 

The Battery Historian chart graphically illustrate power-relevant events 
over time. 

Each row shows a colored bar segment when a system component is 
active and thus drawing current from the battery. The chart does not show 
how much battery was used by the component, only that the app was 
active.  

Charts are organized by category. 

 

Figure 6 Battery Historian Chart 

Battery usage categories 

Given below is a list of battery usage categories. 

● battery_level: When the battery level was recorded and logged. 
Reported in percent, where 093 is 93%. Provides an overall 
measure of how fast the battery is draining. 

● top: The application running at the top; usually, this is the 
application that is visible to the user. If you want to measure 
battery drain while your app is active, make sure it is the top app. 
If you want to measure battery drain while your app is in the 
background, make sure it'snot the top app. 

● wifi_running: Shows that the Wi-Fi network connection was 
active. 

● screen: Screen is turned on. 
● phone_in_call: Recorded when the phone is in a call. 
● wake_lock: App wakes up, grabs a lock, does small work, then 

goes back to sleep. This is one of the most important pieces of 
information. Waking up the phone is expensive, so if you see lots 
of short bars here, that might be a problem. 



 

 
 Introduction to Android 

 

 20
9 

 

 

 

● running: Shows when the CPU is awake. Check whether it is 
awake and asleep when you expect it to be. 

● wake_reason: The last thing that caused the kernel to wake up. If 
it's your app, determine whether it was necessary. 

● mobile_radio: Shows when the radio was on. Starting the radio 
is battery expensive. Many narrow bars close to each other can 
indicate opportunities for batching and other optimizations. 

● gps: Indicates when the GPS was on. Make sure this is what you 
expect. 

● sync: Shows when an app was syncing with a backend. The sync 
bar also shows which app did the syncing. For users, this can 
show apps where they might turn syncing off to save battery. 
Developers should sync as little as possible and only as often as 
necessary. 

Working with Batterystats and Battery Historian 

You should watch the screen cast and do the following steps to learn how 
to use Batterystats and Battery Historian tools. 

For more details you may go to following links in Android Developer 
Forum.  

● https://developer.android.com/studio/profile/battery-
historian.html 

● https://developer.android.com/training/.../battery-
monitoring.html 

15.7 Optimizing Battery Life 

For your app to be ‘good’, it should seek to limit its impact on the battery 
life of its device. After studying this section, you will be able to build 
apps that modify their functionality and behavior based on the state of its 
device. 

By taking steps such as batching network requests, disabling background 
service updates when you lose connectivity, or reducing the rate of such 
updates when the battery level is low, you can ensure that the impact of 
your app on battery life is minimized, without compromising the user 
experience. 

Here we briefly describe the steps you can take to optimize battery life. 
You should go to Android Developer Studio for more details. 

(https://developer.android.com/training/monitoring-device-
state/index.html) What is described in detail in this page are summarized 
below. 

1.  Reducing Network Battery Drain 

Requests that your app makes to the network are a major cause of battery 
drain because they turn on the power-hungry mobile or Wi-Fi radios. 
Beyond the power needed to send and receive packets, these radios spend 

https://developer.android.com/studio/profile/battery-historian.html
https://developer.android.com/studio/profile/battery-historian.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://developer.android.com/training/monitoring-device-state/index.html
https://developer.android.com/training/monitoring-device-state/index.html
https://developer.android.com/training/performance/battery/network/index.html


 

 

Unit 15 Performance 
 

 

21
0 

 

 

 

extra power just turning on and keeping awake. Something as simple as a 
network request every 15 seconds can keep the mobile radio on 
continuously and quickly use up battery power.  

2. Optimizing for Doze and App Standby 

Starting from Android 6.0 (API level 23), Android introduces two power-
saving features that extend battery life for users by managing how apps 
behave when a device is not connected to a power source. Doze reduces 
battery consumption by deferring background CPU and network activity 
for apps when the device is unused for long periods of time. App Standby 
defers background network activity for apps with which the user has not 
recently interacted.  

3. Monitoring the Battery Level and Charging State 

When you are altering the frequency of your background updates to 
reduce the effect of those updates on battery life, check the current 
battery level.You can stopyour updates when the battery charge is nearly 
exhausted. 

4. Determining and Monitoring the Docking State and Type 

Android devices can be docked into several different kinds of docks. 
These include car or home docks and digital versus analog docks. The 
dock-state is typically closely linked to the charging state as many docks 
provide power to docked devices. 

5. Determining and Monitoring the Connectivity Status 

Some of the most common uses for repeating alarms and background 
services is to schedule regular updates of application data from Internet 
resources, cache data, or execute long running downloads. But if you 
arenot connected to the Internet, or the connection is too slow to complete 
adownload there in no use waking the device to schedule the update.  

You can use the ConnectivityManager to check the Internet connectivity.  

6. Manipulating Broadcast Receivers On Demand 

The simplest way to monitor device state changes is to create a 
BroadcastReceiver for each state you are monitoring and register each of 
them in your application manifest. Then within each of these receivers 
you simply reschedule your recurring alarms based on the current device 
state. 

A side-effect of this approach is that your app will wake the device each 
time any of these receivers is triggered—potentially much more 
frequently than required. 

Activity 

Activity 15.3 

• List down names of the techniques listed above that can be used in the 
app you developed. 

• How can you change your app to optimize the battery life? 

https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://developer.android.com/training/monitoring-device-state/docking-monitoring.html
https://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html
https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/training/monitoring-device-state/manifest-receivers.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html


 

 
 Introduction to Android 

 

 21
1 

 

 

 

Unit summary 

 

 

There are five main performance monitors provided by the tool, Android 
Monitor - and they can make you visualize the behavior and performance 
of your app. There are many ways that you can improve the performance 
of your application but optimizing memory and battery life are very 
important. Several techniques for optimizing memory and battery life 
were discussed in this unit. 
 

  



 

 

Unit 16 Security 
 

 

21
2 

 

 

 

Unit 16 

Security 

Introduction 

Android is considered to be the most widely used mobile operating 
system in the world today.  Being Open Source it is very much vulnerable 
for security breaches if the security is not managed properly. 

In this unit, first you will learn about security provided by the operating 
system and how to analyse an application to understand what security 
features are built into it. Then you will study device management 
policies, which will enable you to design and develop applications for 
devices that enforce security policies. 

Upon completion of this unit you should be able to: 

 

Outcomes 

 

▪ identify possible security concerns of an Android application 

▪ identify the device management policies implemented in different 
setups 

▪ identify how security can be enhanced by using device management 
policies 

▪ design and develop applications that enforces security policies on 
devices 

 

 

Terminology 

 

malicious app: software that brings harm to the mobile device 

cryptography: coding or decoding messages to keep them 
secure 

 

 

16.1 Security Concerns of an Android Application 
There are many security concerns regarding Android applications. One 
major security threat is over the limit access permission given and 
requested by apps. When an app is downloaded from Google Play, users 
ignore the extent of permission this app should have on their devices. 
Very often, app developers also do not have a clear understanding as to 
what permissions a mobile application actually needs and request 
overzealous and irrelevant permission. In any operating system, this kind 
of situations expose the user to a source of potential risks. 



 

 
 Introduction to Android 

 

 21
3 

 

 

 

However, risks increase when users download apps from unidentified 
sources to avoid paying the fee. Anyone can create a malicious app and 
upload it on the Internet. This can result in downloading a malicious app 
or one that has been modified to automatically install a virus on Android 
devices. 

Fact that Android is Open Source makes it more vulnerable for malware 
and malicious software attacks. However, being Open Source there is a 
large community of experts reviewing it and developing patches. Anyway, 
users are being hacked without them knowing that they are hacked. 
Another major security threat faced by Android platform due to the 
option of customizing the operating system. Device manufacturers can 
modify the OS to make it function optimally on their device. Moreover, 
users also can modify the OS, integrating customization layers or 
launchers. These practices leads to more security breaches. 

Another major issue with Android is fragmentation. It means that there 
exist multiple versions of Android, even on latest devices. Since some 
devices are never updated to the latest version they will not have the 
latest security updates. It is also difficult to take appropriate security 
measures or educate the users about potential vulnerabilities because user 
experience on each device is different. 

 16.2 Security Provided by the OS 
Android has many security features built into the operating system that 
significantly reduce the frequency and impact of application security 
issues we already discussed. Latest versions of the operating system is 
designed in a way that you can build your apps with default system and 
file permissions without worrying too much about security. 

Some of the core security features provided by Android OS are:  

• Android Application Sandbox that isolates your app data and 
code execution from other apps by running each application other 
than system apps with a different user. 

• Permission reflects Linux permissions groups and corresponding 
user related to app will be assign to particular user group to 
assign permissions. So, access restrictions guaranteed even in the 
kernel level. 

• An application framework which provides common security 
functionality such as cryptography, permissions, and secure inter 
process communication 

• Techniques to mitigate risks associated with common memory 
management errors 

• An encrypted file system that can be enabled to protect data on 
lost or stolen devices 

• User-granted permissions to restrict access to system features and 
user data 

• Application-defined permissions to control application data on a 
per-app basis. 



 

 

Unit 16 Security 
 

 

21
4 

 

 

 

• Android 6.0 and higher versions ask from user to allow or deny 
individual permissions for application dynamically when needed. 

However, it is important for you to be familiar with the Android security 
best practices as given in https://developer.android.com/training/best-
security.html. This web page describe best practices to be followed when 
storing data, using permissions, using networks, validating inputs, 
handling user data, using web view, using cryptography, using inter 
process communication, and dynamically loading code. Following these 
practices will reduce many security issues that may adversely affect the 
users.  

Activity 

Activity 16.1 

Briefly describe different methods recommended as Android best 
practices to store data. 

 

 

Security in a virtual machine 

Unlike in many other Virtual Machine environments the Dalvik VM in 
Android does not provide a security boundary. The application sandbox is 
implemented at the OS level, so Dalvik can interoperate with native code 
in the same application without any security constraints. 

As there is limited storage on mobile devices, it is common for 
developers to build modular applications and use dynamic class loading. 
When doing this, you must consider both the source where you retrieve 
your application logic and where you store it locally. Dynamic class 
loading from sources that are not verified should not be done as that code 
might be modified to include malicious behavior. 

Security in native code 

It is recommended to use the Android SDK for application development, 
rather than using native development kit. Applications built with native 
code are more complex, less portable, and more like to include common 
memory-corruption errors such as buffer overflows. 

 16.3 Information Leakage 

It is widely known that many mobile applications share data with third 
parties without the knowledge of users. There are many reports and 
research papers about in-app advertising that leak potentially sensitive 
personal information on millions of mobile phone users. These data may 
include how much money users make, whether or not they have kids, and 
what their political affiliations are. 

https://developer.android.com/training/best-security.html
https://developer.android.com/training/best-security.html


 

 
 Introduction to Android 

 

 21
5 

 

 

 

Following is a list of situations how information leakage in mobile apps 
take place. 

• Mobile app developers choose to accept in-app advertisements 
inside their app 

• Advertisement networks pay a fee to app developers in order to 
show advertisements and monitor user activity. User data could 
be device models, geolocations, etc. This information is provided 
to advertisers select where to place ads 

• Advertisers instruct ad networks to show their ads based on topic 
targeting (such as “movies”), interest targeting (such as usage 
patterns and previous click throughs), and demographic targeting 
(such as estimated age range)  

• The ad network displays ads to appropriate mobile app users and 
receives payment from advertisers for successful views or click 
throughs by the recipients 

• In-app ads are displayed unencrypted as part of the app’s GUI. 
So that mobile app developers can access the targeted ad content 
delivered to its own app users and then reverse-engineer that data 
to construct a profile of their app customer 

In one research [1], to test what is being leaked, researchers had created a 
custom-built Android app that they installed on more than 200 
participants’ phones. From that they have been able to review the 

accuracy of personalized advertisements served to test subjects from the 
Google mobile ad network, AdMob, based on users’ personal interests 

and demographic profiles. 

Many researchers [1] [2] have found that the root cause of the privacy 
leakage is the lack of isolation between the advertisements and mobile 
apps. It is reported that adopting HTTPS would not do anything to protect 
the advertisement traffic. 

Activity 

Activity 16.2 

This activity is to be done in LMS for this course in the given discussion 
forum. 

Briefly describe main findings of a research paper or a report on 
information leakage from mobile devices. Please give the reference and 
access date and time with URL, if it was accessed on-line.  



 

 

Unit 16 Security 
 

 

21
6 

 

 

 

 

16.4 Device management policies 

Device management policies control features in mobile devices and 
computers. To use them, first you have to define the type of policy to 
support at the functional level. Policies may cover screen-lock password 
strength, expiration timeout, encryption, etc. 

Any operating system would have its own device management policies. 
For mobile devices, these policies can be created by using templates that 
contain recommended or custom settings, and then deploying them to 
devices. Since Android 2.2 (API level 8), the Android platform offers 
system-level device management capabilities through the Device 
Administration APIs so that the application can be configured to ensure a 
strong screen-lock password before displaying restricted content to the 
user. 

Device management policies implemented in different set-ups 

‘Android for Work’ is a program for supporting enterprise use of 

Android. You can develop apps for Android for Work to take advantages 
of built in security and management features in Android.  Enterprise 
mobility management (EMM) providers and enterprise application 
developers can accessed it via APIs.  

Apps built on Android for Work include data security, app security and 
device security as explained below. 

• Data security—Business data is separated in a work profile and 
protected device-wide on work-managed devices. So data 
leakage prevention policies can easily be applied.  

• Apps security—Work apps are deployed through ‘Google Play 
for Work’ preventing installation of apps from unknown sources 

and apply app configurations. 
• Device security— ‘Android for Work’ devices are protected 

with disk encryption, lockscreen, remote attestation services, and 
hardware-backed key store. 

Using ‘Android for Work’, organizations can choose what devices, APIs, 

and framework they want to use to develop apps which may enable; 

• Building apps to help employees be more productive in scenarios 
such as Bring Your Own Device (BYOD), Corporate Owned 
Personally Enabled (COPE) devices, and Corporate-Owned, 
Single-Use (COSU) devices. 

• Connecting with leading enterprise mobility management (EMM) 
partners to help integrate Android in your business. 



 

 
 Introduction to Android 

 

 21
7 

 

 

 

You may use Android for Work Developer Guide, 
https://developer.android.com/work/guide.html to learn to create 
apps that best utilize features in Android. 

 

Moreover, ‘Android for Work’ offers a partner program for developers 

through the Android for Work DevHub 
(https://enterprise.google.com/android/developers/applyDevHub/). It 
provides exclusive access to beta features and developer events, along 
with access to a community of Android developers making enterprise 
apps.  

Designing and developing applications that enforces security policies 
on devices 

In this section, you will learn how to create a security-aware application 
that manages access to its content by enforcing device management 
policies. To do that we will discuss how to,  

1. define and declare your policy 
2. create a device administration receiver 
3. activate the device administrator 
4. implement the device policy controller 

Define and declare your policy 

First, you need to define the kinds of policy to support at the functional 
level such as screen-lock password strength, expiration timeout, 
encryption, etc. 

Then, you must declare the selected policy set, which will be enforced by 
the application, in the res/xml/device_admin.xml file. The 
Android manifest should also reference the declared policy set. 

Each declared policy corresponds to some number of related device 
policy methods in DevicePolicyManager (e.g. defining minimum 
password length and minimum number of uppercase characters). If an 
application attempts to invoke methods whose corresponding policy is 
not declared in the XML, this will result in a SecurityException at 
runtime.  

Create a device administration receiver 

You must create a Device Administration broadcast receiver, which gets 
notification of events related to the policies you have declared to support. 
An application can selectively override callback methods. 

https://developer.android.com/work/guide.html
https://www.google.com/work/android/developers/applyDevHub/
https://enterprise.google.com/android/developers/applyDevHub/
https://developer.android.com/work/device-management-policy.html#DeclarePolicy
https://developer.android.com/work/device-management-policy.html#CreateDeviceAdminReceiver
https://developer.android.com/work/device-management-policy.html#ActivateDeviceAdmin
https://developer.android.com/work/device-management-policy.html#ImplementDevicePolicyController
https://developer.android.com/work/device-management-policy.html#DeclarePolicy
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
https://developer.android.com/reference/java/lang/SecurityException.html


 

 

Unit 16 Security 
 

 

21
8 

 

 

 

 

Activate the device administrator 

Before enforcing any policies, the user needs to manually activate the 
application as a device administrator. It is a good practice to include the 
explanatory text to highlight to users why the application is requesting to 
be a device administrator. It can be done by specifying the 
EXTRA_ADD_EXPLANATION extra in the intent. 

Implement the device policy controller 

After the device administrator is activated successfully, the application 
then configures Device Policy Manager with the requested policy. 
However, new policies are being added to Android with each release. It is 
appropriate to perform version checks in your application if using new 
policies while supporting older versions of the platform.  

More details and necessary code snippets can be found at 
https://developer.android.com/work/device-management-policy.html. 

Activity 

Activity 16.3 

What is the importance of Network security configuration? 

 

Unit summary 

 

 

In this unit we discussed importance of security in Android apps, the 
security provided by the operating system, problem of information 
leakage and how to develop secure apps by adhering to the security 
policies. 

References 

1. The Price of Free: Privacy Leakage in Personalized Mobile In-App Ads 
Wei Meng, Ren Ding, Simon P. Chung, Steven Han, and Wenke Lee 

2. Privacy Capsules: Preventing information leaks by mobile apps Raul 
Herbster, Scott DellaTorre, Peter Druschel, Bobby Bhattacharjee 

 

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#EXTRA_ADD_EXPLANATION
https://developer.android.com/work/device-management-policy.html


 

 
 Introduction to Android 

 

 21
9 

 

 

 

Appendix -A 

Sensor types 

Table 12.1 Sensor types supported by the Android platform. 

Sensor Type Description Common Uses 

TYPE_ACCELE
ROMETER Hardware 

Measures the acceleration 
force in m/s2 that is 
applied to a device on all 
three physical axes (x, y, 
and z), including the force 
of gravity. 

Motion detection 
(shake, tilt, etc.) 

TYPE_AMBIEN
T_TEMPERATU
RE 

Hardware 
Measures the ambient 
room temperature in 
degrees Celsius (°C).  

Monitoring air 
temperatures 

TYPE_GRAVIT
Y 

Software 
or 
Hardware 

Measures the force of 
gravity in m/s2 that is 
applied to a device on all 
three physical axes. 

Motion detection 
(shake, tilt, etc.) 

TYPE_GYROSC
OPE 

Hardware 

Measures a device's rate 
of rotation in rad/s around 
each of the three physical 
axes. 

Rotation 
detection (spin, 
turn, etc.) 

TYPE_LIGHT Hardware 
Measures the ambient 
light level (illumination) 
in lx. 

Controlling 
screen 
brightness. 

TYPE_LINEAR
_ACCELERATI
ON 

Software 
or 
Hardware 

Measures the acceleration 
force in m/s2 that is 
applied to a device on all 
three physical axes, 
excluding the force of 
gravity. 

Monitoring 
acceleration 
along a single 
axis 

TYPE_MAGNET
IC_FIELD 

Hardware 
Measures the ambient 
geomagnetic field for all 
three physical axes in μT. 

Creating a 
compass 

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GRAVITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GRAVITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LIGHT
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD


 

 

Appendix -A Security 
 

 

22
0 

 

 

 

TYPE_ORIENT
ATION 

Software 

Measures degrees of 
rotation that a device 
makes around all three 
physical axes.  

Determining 
device position 

TYPE_PRESSU
RE 

Hardware 
Measures the ambient air 
pressure in hPa or mbar. 

Monitoring air 
pressure 

TYPE_PROXIM
ITY 

Hardware 

Measures the proximity of 
an object in cm relative to 
the view screen of a 
device. This sensor is 
typically used to 
determine whether a 
handset is being held up 
to a person's ear. 

Phone position 
during a call 

TYPE_RELATI
VE_HUMIDITY 

Hardware 
Measures the relative 
ambient humidity in 
percent (%). 

Monitoring 
dewpoint, 
absolute, and 
relative humidity 

TYPE_ROTATI
ON_VECTOR 

Software 
or 
Hardware 

Measures the orientation 
of a device by providing 
the three elements of the 
device's rotation vector. 

Motion detection 
and rotation 
detection 

TYPE_TEMPER
ATURE 

Hardware 

Measures the temperature 
of the device in degrees 
Celsius (°C). This sensor 
implementation varies 
across devices and this 
sensor was replaced with 
the 
TYPE_AMBIENT_TEMPER

ATURE sensor in API 
Level 14 

Monitoring 
temperatures 

 

 

 

 

 

 

 

 

 

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PRESSURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PRESSURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_TEMPERATURE


 

 
 Introduction to Android 

 

 22
1 

 

 

 

Table 12.2 Motion sensors that are supported on the Android platform. 

Sensor Sensor event data Description 
Units of 
measure 

TYPE_ACCELE
ROMETER 

SensorEvent.va
lues[0] 

Acceleration force along 
the x axis (including 
gravity). 

m/s2 
SensorEvent.va
lues[1] 

Acceleration force along 
the y axis (including 
gravity). 

SensorEvent.va
lues[2] 

Acceleration force along 
the z axis (including 
gravity). 

TYPE_GRAVIT
Y 

SensorEvent.va
lues[0] 

Force of gravity along 
the x axis. 

m/s2 
SensorEvent.va
lues[1] 

Force of gravity along 
the y axis. 

SensorEvent.va
lues[2] 

Force of gravity along 
the z axis. 

TYPE_GYROSC
OPE 

SensorEvent.va
lues[0] 

Rate of rotation around 
the x axis. 

rad/s 
SensorEvent.va
lues[1] 

Rate of rotation around 
the y axis. 

SensorEvent.va
lues[2] 

Rate of rotation around 
the z axis. 

TYPE_GYROSC
OPE_UNCALIB
RATED 

SensorEvent.va
lues[0] 

Rate of rotation (without 
drift compensation) 
around the x axis. 

rad/s 

SensorEvent.va
lues[1] 

Rate of rotation (without 
drift compensation) 
around the y axis. 

SensorEvent.va
lues[2] 

Rate of rotation (without 
drift compensation) 
around the z axis. 

SensorEvent.va
lues[3] 

Estimated drift around 
the x axis. 

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GRAVITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GRAVITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE_UNCALIBRATED
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE_UNCALIBRATED
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE_UNCALIBRATED


 

 

Appendix -A Security 
 

 

22
2 

 

 

 

SensorEvent.va
lues[4] 

Estimated drift around 
the y axis. 

SensorEvent.va
lues[5] 

Estimated drift around 
the z axis. 

TYPE_LINEAR
_ACCELERATI
ON 

SensorEvent.va
lues[0] 

Acceleration force along 
the x axis (excluding 
gravity). 

m/s2 
SensorEvent.va
lues[1] 

Acceleration force along 
the y axis (excluding 
gravity). 

SensorEvent.va
lues[2] 

Acceleration force along 
the z axis (excluding 
gravity). 

TYPE_ROTATI
ON_VECTOR 

SensorEvent.va
lues[0] 

Rotation vector 
component along the x 
axis (x * sin(θ/2)). 

Unitless 

SensorEvent.va
lues[1] 

Rotation vector 
component along the y 
axis (y * sin(θ/2)). 

SensorEvent.va
lues[2] 

Rotation vector 
component along the z 
axis (z * sin(θ/2)). 

SensorEvent.va
lues[3] 

Scalar component of the 
rotation vector 
((cos(θ/2)).1 

TYPE_SIGNIF
ICANT_MOTIO
N 

N/A N/A N/A 

TYPE_STEP_C
OUNTER 

SensorEvent.va
lues[0] 

Number of steps taken 
by the user since the last 
reboot while the sensor 
was activated. 

Steps 

TYPE_STEP_D
ETECTOR N/A N/A N/A 

1 The scalar component is an optional value. 

 

 

 

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_SIGNIFICANT_MOTION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_SIGNIFICANT_MOTION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_SIGNIFICANT_MOTION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_STEP_COUNTER
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_STEP_COUNTER


 

 
 Introduction to Android 

 

 22
3 

 

 

 

Table 12.3 Environment sensors that are supported on the Android 
platform. 

Sensor Sensor event data Units of 
measure 

Data description 

TYPE_AMBIENT
_TEMPERATURE 

event.values
[0] °C 

Ambient air 
temperature. 

TYPE_LIGHT 

event.values
[0] lx Illuminance. 

TYPE_PRESSUR
E  

event.values
[0] 

hPa or 
mbar 

Ambient air pressure. 

TYPE_RELATIV
E_HUMIDITY 

event.values
[0] % 

Ambient relative 
humidity. 

TYPE_TEMPERA
TURE 

event.values
[0] °C Device temperature.1 

1 Implementations vary from device to device. This sensor was 
deprecated in Android 4.0 (API Level 14). 

Table 12.4. Position sensors that are supported on the Android platform. 

Sensor Sensor event data Description Units of 
measure 

TYPE_GAME
_ROTATION
_VECTOR 

SensorEvent.va
lues[0] 

Rotation vector component 
along the x axis (x * 
sin(θ/2)). 

Unitless 
SensorEvent.va
lues[1] 

Rotation vector component 
along the y axis (y * 
sin(θ/2)). 

SensorEvent.va
lues[2] 

Rotation vector component 
along the z axis (z * 
sin(θ/2)). 

TYPE_GEOM
AGNETIC_R
OTATION_V
ECTOR 

SensorEvent.va
lues[0] 

Rotation vector component 
along the x axis (x * 
sin(θ/2)). 

Unitless 

SensorEvent.va
lues[1] 

Rotation vector component 
along the y axis (y * 
sin(θ/2)). 

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LIGHT
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PRESSURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PRESSURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GAME_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GAME_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GAME_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GEOMAGNETIC_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GEOMAGNETIC_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GEOMAGNETIC_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GEOMAGNETIC_ROTATION_VECTOR


 

 

Appendix -A Security 
 

 

22
4 

 

 

 

SensorEvent.va
lues[2] 

Rotation vector component 
along the z axis (z * 
sin(θ/2)). 

TYPE_MAGN
ETIC_FIEL
D 

SensorEvent.va
lues[0] 

Geomagnetic field strength 
along the x axis. 

μT 
SensorEvent.va
lues[1] 

Geomagnetic field strength 
along the y axis. 

SensorEvent.va
lues[2] 

Geomagnetic field strength 
along the z axis. 

TYPE_MAGN
ETIC_FIEL
D_UNCALIB
RATED 

SensorEvent.va
lues[0] 

Geomagnetic field strength 
(without hard iron 
calibration) along the x 
axis. 

μT 

SensorEvent.va
lues[1] 

Geomagnetic field strength 
(without hard iron 
calibration) along the y 
axis. 

SensorEvent.va
lues[2] 

Geomagnetic field strength 
(without hard iron 
calibration) along the z axis. 

SensorEvent.va
lues[3] 

Iron bias estimation along 
the x axis. 

SensorEvent.va
lues[4] 

Iron bias estimation along 
the y axis. 

SensorEvent.va
lues[5] 

Iron bias estimation along 
the z axis. 

TYPE_ORIE
NTATION1 

SensorEvent.va
lues[0] 

Azimuth (angle around the 
z-axis). 

Degrees 
SensorEvent.va
lues[1] 

Pitch (angle around the x-
axis). 

SensorEvent.va
lues[2] 

Roll (angle around the y-
axis). 

TYPE_PROX
IMITY 

SensorEvent.va
lues[0] Distance from object.2 cm 

1This sensor was deprecated in Android 2.2 (API level 8), and this sensor 
type was deprecated in Android 4.4W (API level 20). The sensor 
framework provides alternate methods for acquiring device orientation, 
which are discussed in Computing the Device's Orientation.  

2 Some proximity sensors provide only binary values representing near 
and far. 

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD_UNCALIBRATED
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD_UNCALIBRATED
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD_UNCALIBRATED
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD_UNCALIBRATED
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY


 

 
 Introduction to Android 

 

 22
5 

 

 

 

Appendix - B 
 

Answers to Activities 

 

This section provides the answer guide for the given activities in this 
book. 

 

UNIT 01  
  
Activity 1.1 

1. You should be able to access this information in the same way 
 regardless of the device’s version.   

2. Open the “App drawer” – Press the button at the bottom of your  
phone, in the center to view the entire list of apps installed in 
your device. 

3. Scroll through the list and find “Settings” icon and tap it. 
4. Scroll through the “Setting” and find “About phone” or “About  
 tablet” option and tap it. 
5. Look for “Android version”, “Kernel version” and other relevant  

fields.   
  
Activity 1.2 
Across: 1. Cupcake 2. Gingerbread 3. Donut 4. Ice Cream Sandwich 5. 
Jelly Bean 6. Lollypop 7. Froyo   
 
Down: 1. Kitkat 2. Éclair 3. Honeycomb 4. Marshmallow 
 
Activity 1.3 
Android is a powerful Operating System which supports many 
applications in Smart Phones. It offers many options not found in 
comparable mobile operating systems. For instance, there are some 
features such as Near Field Communication (NFC), storage and battery 
swap and media support. Here you have to identify such features to get an 
idea about how strong Android operating is.  
  
  
 
 
 
 



 

 

Appendix - B Security 
 

 

22
6 

 

 

 

UNIT 02  
  
Activity 2.1 

Linux Kernel is the foundation component of Android platform. It is 
there to handle the hardware; means it helps the software part of the 
Android System to interact with the hardware. Because all hardware 
drivers (display driver, keypad driver, camera driver, Wi-Fi driver, 
Bluetooth driver, etc.) are inbuilt in the kernel, the android runtime does 
not need to worry about the hardware handling. It is the lowest layer of 
Android architecture and it serves as the abstraction layer to other layers. 

Activity 2.2: 

Dalvik Virtual Machine (DVM) is a register based virtual machine that is 
used by Android system to run the Dalvik executable code (.dex file) 
which is a compiled code of Android. It used in Android System similarly 
as JVM works for Java to execute the byte code (.classfile). DVM doesn’t 
work with .class files. One thing that you must know is that implicitly 
.dex file is generated by the .class file after highly optimizing the .class 
file for low memory and least processing power. It gives the power to a 
device to become an Android device. 

Android Runtime (ART) is the successor of Dalvik Virtual Machine 
(DVM). It has some advantage over DVM including ahead-of-time 
compilation (AOT), improved garbage collection and other development 
and debugging enhancements. 

Activity 2.3: 

 

 Advantages Disadvantages 

Native • Silky smooth 
performance 

• Best user 
experience 

• App icon available 
on the device 

• Can receive push 
notifications 

• Runs inside the 
operating system 

• Can use the 
platform APIs 

• Developers need to know 
each of the platforms 
languages 

• Source code only works 
on the targeted platform 

• Slower to market due to 
multiple source codes 

 



 

 
 Introduction to Android 

 

 22
7 

 

 

 

Web • Cross platform 
• Single code base 
• Fast to production 
• Lower 

development cost 

• Sluggish performance 
• Require loading 
• Network connection 

required 
• Not available in the app 

stores 
• Extremely limited API 

access Lives in the 
browser 

Hybrid • Single source code 
• Access to all 

platforms 
• Less time to 

deployment 
• Available in the 

app store 
• Has application 

icon on the device 

• Dependent on such as 
phone gap 

• Middleware may be slow 
to update 

• More bug prone 
• Some bug fixes need 

middleware updates 
• Some bug fixes are 

outside of your control 
• Slower performance 
• More issues from device 

fragmentation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Appendix - B Security 
 

 

22
8 

 

 

 

 

Feature Native HTMAL5 Hybrid 

Graphics Native APIs HTML, 
Canvas, SVG 

HTML, Canvas, 
SVG 

App performance Fast Moderate Moderate 

Distribution App 
Store/Market 

Web App 
Store/Market 

Native look and 
feel 

Native Emulated Emulated 

Camera Yes No Yes 

Push 
Notifications 

Yes No Yes 

File upload Yes Yes Yes 

Contacts, 
calendar 

Yes No Yes 

Connectivity Online and 
offline 

Mostly online Online and 
offline 

Development 
skills needed 

XML, Java HTML5, CSS, 
Javascript 

HTML5, CSS, 
Javascript 

Geolocation Yes Yes Yes 

 

  
 
 
 
 
 



 

 
 Introduction to Android 

 

 22
9 

 

 

 

UNIT 03  

Activity 3.1: 

A fragment is essentially a modular section of an activity. Fragment has 
its own lifecycle and input events, and which can be added or removed 
based on its design. 

(Source: 
https://developer.android.com/guide/components/fragments.html ) 

Activity 3.2: 

 

Figure 3.5: A representation of how each new activity in a task adds an 
item to the back stack. (Source: 
https://developer.android.com/guide/components/tasks-and-back-
stack.html ) 

Activities in the stack are never rearranged, only pushed and popped from 
the stack—pushed onto the stack when started by the current activity and 
popped off when the user leaves it using the Back button. When the user 
presses the Back button, the current activity is destroyed and the previous 
activity resumes. 

 

Activity 3.3:  

1. A) True  

2. B) False 

3. A) True 

4. A) True 

5. A) True 

 

 
 
 
 
 
 
 

https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/guide/components/tasks-and-back-stack.html


 

 

Appendix - B Security 
 

 

23
0 

 

 

 

UNIT 04 

Activity 4.1: 

You can explore cross platforms such as PhoneGap, Xamarin, 
Rhomobile, Appcelerator Titanium, MoSync, Alpha Anywhere, 
Corona, Qt, and 5App ect… 

The most attention is given for PhoneGap,  Appcelerator and Xamarin 

PhoneGap has several features and uses of it. It is free in the open-source 
framework. It can be used to build native apps for multiple platforms. It is 
built using HTML, CSS and JavaScript to cater larger communities. 
PhoneGap API allows access to device features such as Accelerometer, 
Camera, Microphone, File system and few more. 

Activity 4.2: 

You must install one Android platform and platform tools prior to 
Android development. 

 

UNIT 05  
 

Activity 5.1  

Identify the element that is not part of the basic application component of 
an Android application.  

o Activities  

o Services 

o Content Providers 

o Screencast Receivers 

o Broadcast Receivers 

 

Answer: 

o  Screencast Receivers 

 

Activity 5.2 

State the intent types that is available in Android. 
 
Answer: Explicit Intent and Implicit Intent 

 

Activity 5.3 
Explain the role of AndroidManifest.xml file in an Android application. 

 
Answer: Every application must have an AndroidManifest.xml file 

http://www.appcelerator.com/titanium/


 

 
 Introduction to Android 

 

 23
1 

 

 

 

(with precisely that name) in its root directory. The manifest file provides 
essential information about your app to the Android system, which the 
system must have before it can run any of the app's code. 

 

UNIT 06  
Activity 6.1 

1. Create a simple “Hello World Program” 

Note: If you find it difficult to follow the instructions below, please refer 
to the video on ‘’Android development”  for step by step instructions. 

 

In the file app > java > com.example.myfirstapp > MainActivity.java, add 
the sendMessage() method stub as shown below: 

public class MainActivity extends AppCompatActivity { 

    @Override 

    protected void onCreate(Bundle savedInstanceState) 

{ 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

    } 

 

    /** Called when the user taps the Send button */ 

    public void sendMessage(View view) { 

        // Do something in response to button 

    } 

} 

Now return to the activity_main.xml file to call this method from the button: 
1. Click to select the button in the Layout Editor. 

2. In the Properties window, locate the onClick property and 
select sendMessage [MainActivity] from the drop-down list. 

3. In MainActivity.java, add the EXTRA_MESSAGE constant and 
the sendMessage() code, as shown here: 

public class MainActivity extends 

AppCompatActivity { 

    public static final String EXTRA_MESSAGE = 

"com.example.myfirstapp.MESSAGE"; 

    @Override 

    protected void onCreate(Bundle 

savedInstanceState) { 



 

 

Appendix - B Security 
 

 

23
2 

 

 

 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

    } 

 

    /** Called when the user taps the Send 

button */ 

    public void sendMessage(View view) { 

        Intent intent = new Intent(this, 

DisplayMessageActivity.class); 

        EditText editText = (EditText) 

findViewById(R.id.editText); 

        String message = 

editText.getText().toString(); 

        intent.putExtra(EXTRA_MESSAGE, message); 

        startActivity(intent); 

    } 

} 

 

Display the message 

 

1. In DisplayMessageActivity.java, add the following code to 
the onCreate() method: 

@Override 

protected void onCreate(Bundle savedInstanceState) 

{ 

    super.onCreate(savedInstanceState); 

    setContentView(R.layout.activity_display_messag

e); 

     

    // Get the Intent that started this activity 

and extract the string 

    Intent intent = getIntent(); 

    String message = 

intent.getStringExtra(MainActivity.EXTRA_MESSAGE); 

 

    // Capture the layout's TextView and set the 

string as its text 

    TextView textView = (TextView) 

findViewById(R.id.textView); 

    textView.setText(message); 

} 

2. Press Alt + Enter (or Option + Return on Mac) to import missing 
classes. Your imports should end up as the following: 



 

 
 Introduction to Android 

 

 23
3 

 

 

 

import android.content.Intent; 

import android.support.v7.app.AppCompatActivity; 

import android.os.Bundle; 

import android.view.ViewGroup; 

import android.widget.TextView; 

Add up navigation 

<activity android:name=".DisplayMessageActivity" 

          android:parentActivityName=".MainActivity" > 

    <!-- The meta-data tag is required if you support 

API level 15 and lower --> 

    <meta-data 

        android:name="android.support.PARENT_ACTIVITY" 

        android:value=".MainActivity" /> 

</activity> 

Run the app 

Now run the app again by clicking Apply Changes  in the 
toolbar. When it opens, type a message ”Hello World” in the text field, 
and tap Send to see the message appear in the second activity. 

 

Now you have created your first “Hello World” Program. 

 

Activity 6.2 

Build a simple app and run the application on 

a. Emulator 

b. Actual Device 

Answer: Please check the following URL for the step by step tutorial on 

how you can run an application in the Emulator and the Actual Device: 

 
UNIT 07  
 
 Activity 7.1 
Android devices come in many shapes and sizes all around the world. 
With a wide range of device types, to reach a huge audience, your app 
needs to adapt to various device configurations. Some of the important 
variations that you should consider include different languages, screen 
sizes, and versions of the Android platform. 



 

 

Appendix - B Security 
 

 

23
4 

 

 

 

 
Activity 7.2 
Latest versions of Android often provide great APIs for your application. 
You should continue to support older versions of Android until more 
devices get updated. For this activity, you have to find version of the 
Android, code name, API level and the distribution rate for different 
platform versions. For ex:  7.0, Nougat, API level 24 and Distribution 
rate 8.9% 
 
Activity 7.3 
To calculate resolution of your mobile screen (Pixel density), you have to 
know vertical and horizontal pixel counts and your diagonal screen size 
then apply the below formula. 
 
Samsung Galaxy S4 
W – 1080 pixels 
H – 1920 pixels 
Dp – 2202.9 pixels 
Di – 5 inches 

Resolution (Pixel density) of the Samsung Galaxy S4 is 441 

 
UNIT 09 
  
Activity 9.1 
  
Differentiate the use of  local test from instrumented test when 
performing a unit test of an Android application. 
  
Answer : Local tests are the unit tests run on the local machines only. 
These tests are compiled to run locally on JVM to minimize the execution 
time. Instrumented tests are the unit tests run on Android device or 
emulator. 
  
  
Activity 9.2 
  
Create an Android application “MyApp” with a class 

“ConversionUtil”  to perform the given two functionalities.  
• To convert centimeters into inches    [write a method 

ConvertCmtoInch()] 
• To convert inches into centimeters    [write a method 

ConvertInchtoCm()] 
  
Then write local unit tests to check whether the written functionalities 
provide the expected output. Use the values given as inputs and expected 
output to test the method. 
 
  



 

 
 Introduction to Android 

 

 23
5 

 

 

 

Functionality to test Input  Output 

Convert centimeters into inches 10 centimeters  3.93701 inches 

Convert inches into centimeters 10 inches 25.4 centimeters 

  
Answer :  
First you need to create a new Android Project by providing MyApp as the 
Application Name. 
  
Then you need to check whether the testing environment is set in your 
application. If not you need to go to Module Settings in your application 
and import JUnit.  
  
Then you need to write the class ConversionUtil with two methods 
ConvertCmtoInch() and ConvertInchtoCm() with necessary logic in 
them. A sample code snippet for method ConvertCmtoInch() is given 
below. 
  
public double ConvertCmtoInch(double cm){ 
    return  cm * 0.393701; 
{ 
  
Similarly write the method to convert inches into centimeters. 
  
Then you need to write the unit tests to test the two functionalities. You 
can refer the video given under unit 9, for the steps to be followed.  
 
Activity 9.3 

Go to the settings of your device and Scroll down to the bottom of the 
about screen and find the Build number. Tap the Build number field 
seven times to enable Developer Options. 

 
UNIT 10 
 
Activity 10.1 

Refer the given link of valid or invalid state transitions from the 
MediaPlayer 
https://developer.android.com/reference/android/media/MediaPlayer.html
#Valid_and_Invalid_States 

Activity 10.2 
Google Music Play 

·         Play stored music files 

·         Streaming music files 



 

 

Appendix - B Security 
 

 

23
6 

 

 

 

·         Download music files 

·         Upload music files 

·         Support MP3, AAC, WMA, FLAC, Ogg, or ALAC file formats 

·         Support offline playback 

Ustream 

·          Play stored video files 

·         Streaming video files 

·         Download video files 

• Support MOV, MP4, AVI, OGM,MPEG2 and WMV file formats 
with video codecs: H264, H263, MPEG4 (and variants), VP6, 
VP8, THEORA, WMV and audio codecs: MP3, AAC-LC, 
Nellymoser, PCM (16 bit max), Speex, Vorbis, WMV 

·         Support offline playback 

Netflix 

·         Play stored video files 

·         Streaming video files 

·         Download video files 

·         Support AVC, MP4, file formats with H.264, WMA, WMV3, VC- 

 1 Advanced Profiling encoding 

·         Support offline playback 

XfinityTV 

·         Play stored video files 

·         Streaming video files 

·         Download video files 

·         Support DVR functions 

·         Support offline playback 

 

Activity 10.3 
 
Button boton = (Button) findViewById(R.id.boton); 

boton.setOnClickListener(new View.OnClickListener() { 

@Override 

public void onClick(View v) { 

 MediaPlayer mp = MediaPlayer.create(TestSonido.this, 
R.raw.slayer);  

 mp.start(); 

} 

}); 

https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/Windows_Media_Audio
https://en.wikipedia.org/wiki/FLAC
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/Apple_Lossless


 

 
 Introduction to Android 

 

 23
7 

 

 

 

 
UNIT 14 
 
Activity 14.1 
Depending on whether the publishing is intended for proliferation among 
certain types of devices, device manufacturer based AppStores are more 
viable for both AppA and AppB. If the proliferation is expected as device 
agnostic, then for AppA, independent AppStores are more viable 
platforms.  Since there is no specifications to select an appropriate mobile 
operator or a supporting operating system, such specific AppStores are 
not desirable. 
 
Activity 14.2 
Equalizer is a free app. It does not require a payment to install. 
 
Activity 14.3 
Free apps do not necessarily ensure a large user base. However, a user is 
more likely to install a free app. If a subscription is introduced the users 
expect value-for-money . Therefore, would require additional features 
etc. Depending on the visions of whether to popularize, sustain the 
market with new and emerging competitors, retain a significantly larger 
user base or to increase the revenue can be considered as important 
aspects to change from one revenue model to another. 
 
UNIT 15 
 
Activity 15.1 
Q: What are the sub-tools provided by the Android Monitor to analyse 
the performance of an app? 
A: Android Monitor provides various sub-tools to profile the performance 
of an app. They are the performance monitors such as logcat, 
Memory, CPU, GPU, and Network Monitors. Dumpsys is an Android 
tool that runs on the device and dumps information about the status of 
system services. 
 
Activity 15.2 
Answer depends on the developed app during the course. Many 
techniques are given under ‘How Android Manages Memory’ 
 
Activity 15.3 
Answer depends on the developed app during the course. 
 
UNIT 16 
 
Activity 16.1 
Q:Briefly describe different methods recommended as Android best 
practices to store data. 
Answer: Shared Preferences 



 

 

Appendix - B Security 
 

 

23
8 

 

 

 

Store Private Primitive data in key value pairs 
Internal Storage 
Store private data on the device memory 
External Storage 
Store public data on the shared external storage 
SQLite Databases 
Store structured data in a private database 
Network Connection 
Store data on the web with your own network server 
 

Activity 16.2   
Q:Briefly describe main findings of a research paper or a report on 
information leakage from mobile devices. Please give the reference and 
access date and time with URL, if it was accessed on-line. 

Two example answers are given below. 
• Mobile app developers choose to accept in-app advertisements 

inside their app 
• Advertisement networks pay a fee to app developers in order to 

show advertisements and monitor user activity. User data could 
be device models, geolocations, etc. This information is provided 
to advertisers select where to place ads 

Activity 16.3 

Importance of the Network Security Configuration feature is that, it lets 
apps customize their network security settings in a safe, declarative 
configuration file without modifying app code. These security settings 
can be configured for specific applications in specific domains.  


